【題目】一元二次方程2x2=1-3x化成ax2+bx+c=0的形式后,a、b、c的值分別為( )
A. 2,1,-3 B. 2,3,-1 C. 2,3,1 D. 2,1,3
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,點(diǎn)P從點(diǎn)C開始沿射線CA方向以1cm/s的速度運(yùn)動(dòng);同時(shí),點(diǎn)Q也從點(diǎn)C開始沿射線CB方向以3cm/s的速度運(yùn)動(dòng).
(1)幾秒后△PCQ的面積為3cm2?此時(shí)PQ的長(zhǎng)是多少?(結(jié)果用最簡(jiǎn)二次根式表示)
(2)幾秒后以A、B、P、Q為頂點(diǎn)的四邊形的面積為22cm2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A(﹣3,0),B(9,0)和C(0,4).CD垂直于y軸,交拋物線于點(diǎn)D,DE垂直與x軸,垂足為E,l是拋物線的對(duì)稱軸,點(diǎn)F是拋物線的頂點(diǎn).
(1)求出二次函數(shù)的表達(dá)式以及點(diǎn)D的坐標(biāo);
(2)若Rt△AOC沿x軸向右平移到其直角邊OC與對(duì)稱軸l重合,再沿對(duì)稱軸l向上平移到點(diǎn)C與點(diǎn)F重合,得到Rt△A1O1F,求此時(shí)Rt△A1O1F與矩形OCDE重疊部分的圖形的面積;
(3)若Rt△AOC沿x軸向右平移t個(gè)單位長(zhǎng)度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2與Rt△OED重疊部分的圖形面積記為S,求S與t之間的函數(shù)表達(dá)式,并寫出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,AD=2AB,F是AD的中點(diǎn),作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論:(1)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF,其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,AD是∠BAC的角平分線,點(diǎn)O為AB的中點(diǎn),連接DO并延長(zhǎng)到點(diǎn)E,使OE=OD,連接AE,BE.
(1)求證:四邊形AEBD是矩形;
(2)當(dāng)△ABC滿足什么條件時(shí),矩形AEBD是正方形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用適當(dāng)?shù)姆?hào)表示a的2倍與4的差比a的3倍小的關(guān)系式( 。
A. 2a+4<3a B. 2a-4<3a C. 2a-4≥3a D. 2a+4≤3a
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠AOB=3∠BOC,若∠BOC=30°,則∠AOC等于( )
A.120° B.120°或60° C.30° D.30°或90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2010年4月20日晚,中央電視臺(tái)承辦《情系玉樹,大愛無(wú)疆﹣﹣抗震救災(zāi)大型募捐活動(dòng)特別節(jié)目》共募得善款21.75億元.21.75億元用科學(xué)記數(shù)法可表示為( 。
A. 21.75×108元 B. 0.2175×1010元
C. 2.175×1010元 D. 2.175×109元
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com