【題目】已知:如圖,△ABC中,AB=4,AC=6,AD平分∠BAC,且BD⊥AD于D,交AC于F,E是BC的中點(diǎn),連接DE.求:DE的長度.

【答案】解:∵AD平分∠BAC,

∴∠BAD=∠FAD.

∵BD⊥AD于D,

∴∠BDA=∠FDA=90°,

∴△ABF是等腰三角形,

∴AB=AF,BD=FD.

∵AB=4,AC=6,

∴CF=AC﹣AF=6﹣4=2.

∵E是BC的中點(diǎn),

∴DE= CF=1


【解析】先根據(jù)題意判斷出△ABF是等腰三角形,再由三角形中位線定理即可得出結(jié)論.
【考點(diǎn)精析】本題主要考查了三角形中位線定理的相關(guān)知識(shí)點(diǎn),需要掌握連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,D、EBC邊上的點(diǎn),BDDEEC=321,MAC邊上,CMMA=12,BMAD,AEH,G,則BHHGGM等于(

A. 421 B. 531 C. 25125 D. 512410

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yx2+2xa2a為常數(shù))的頂點(diǎn)在第_____象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:8m﹣2m3=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是∠AOB的角平分線上一點(diǎn),過點(diǎn)P作PC∥OA交OB于點(diǎn)C,PD⊥OA于點(diǎn)D.若OC=5,PD=4,則OP=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸正半軸交于點(diǎn)A(3,0),與y軸交于點(diǎn)B(0,3),點(diǎn)P是x軸上一動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線交拋物線于點(diǎn)C,交直線AB于點(diǎn)D,設(shè)P(x,0).

(1)求拋物線的函數(shù)表達(dá)式;

(2)當(dāng)0<x<3時(shí),求線段CD的最大值;

(3)在△PDB和△CDB中,當(dāng)其中一個(gè)三角形的面積是另一個(gè)三角形面積的2倍時(shí),求相應(yīng)x的值;

(4)過點(diǎn)B,C,P的外接圓恰好經(jīng)過點(diǎn)A時(shí),x的值為 .(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果兩個(gè)相似三角形對應(yīng)的高之比是23,那么它們對應(yīng)的角平分線之比是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各圖能表示y是x的函數(shù)是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1、圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個(gè)小正方形的邊長均為1,線段AC的兩個(gè)端點(diǎn)均在小正方形的頂點(diǎn)上.

1)如圖1,點(diǎn)P在小正方形的頂點(diǎn)上,在圖1中作出點(diǎn)P關(guān)于直線AC的對稱點(diǎn)Q,連接AQQC、CP、PA,并直接寫出四邊形AQCP的周長;

2)在圖2中畫出一個(gè)以線段AC為對角線、面積為6的矩形ABCD,且點(diǎn)B和點(diǎn)D均在小正方形的頂點(diǎn)上.

查看答案和解析>>

同步練習(xí)冊答案