【題目】在△ABC中,AB=AC.
(1)如圖1,如果∠BAD=30°,AD是BC上的高,AD=AE,則∠EDC=
(2)如圖2,如果∠BAD=40°,AD是BC上的高,AD=AE,則∠EDC=
(3)思考:通過以上兩題,你發(fā)現(xiàn)∠BAD與∠EDC之間有什么關(guān)系?請(qǐng)用式子表示:
(4)如圖3,如果AD不是BC上的高,AD=AE,是否仍有上述關(guān)系?如有,請(qǐng)你寫出來,并說明理由.
【答案】
(1)15°
(2)20°
(3)∠EDC= ∠BAD
(4)解:仍成立,理由如下
∵AD=AE,∴∠ADE=∠AED,
∴∠BAD+∠B=∠ADC=∠ADE+∠EDC=∠AED+∠EDC=(∠EDC+∠C)+∠EDC
=2∠EDC+∠C
又∵AB=AC,
∴∠B=∠C
∴∠BAD=2∠EDC.
故分別填15°,20°,∠EDC= ∠BAD
【解析】(1)根據(jù)等腰三角形的性質(zhì)三線合一和∠BAD=30°,得到△ABC是等邊三角形,由AD=AE和三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角之和
,求出∠EDC的度數(shù);(2)由∠BAD=40°,AD是BC上的高,AD=AE,根據(jù)三角形內(nèi)角和定理和三線合一,求出∠EDC的度數(shù);(3)根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理,得出結(jié)論∠EDC=∠BAD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由多項(xiàng)式乘法:(x+a)(x+b)=x2+(a+b)x+ab,將該式從右到左使用,即可得到“十字相乘法”進(jìn)行因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b)
示例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3)
(1)嘗試:分解因式:x2+6x+8=(x+)(x+);
(2)應(yīng)用:請(qǐng)用上述方法解方程:x2﹣3x﹣4=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.過一點(diǎn)有且只有一條直線與已知直線平行
B.同旁內(nèi)角互補(bǔ)
C.點(diǎn)到直線的距離就是這點(diǎn)到這條直線所作的垂線段
D.實(shí)數(shù)與數(shù)軸上的點(diǎn)一一對(duì)應(yīng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)和形是數(shù)學(xué)的兩個(gè)主要研究對(duì)象,我們經(jīng)常運(yùn)用數(shù)形結(jié)合、數(shù)形轉(zhuǎn)化的方法解決一些數(shù)學(xué)問題。下面我們來探究“由數(shù)思形,以形助數(shù)”的方法在解決代數(shù)問題中的應(yīng)用.
探究一:求不等式的解集
(1)探究的幾何意義
如圖①,在以O為原點(diǎn)的數(shù)軸上,設(shè)點(diǎn)A'對(duì)應(yīng)點(diǎn)的數(shù)為,由絕對(duì)值的定義可知,點(diǎn)A'與O的距離為,
可記為:A'O=。將線段A'O向右平移一個(gè)單位,得到線段AB,,此時(shí)點(diǎn)A對(duì)應(yīng)的數(shù)為,點(diǎn)B的對(duì)應(yīng)數(shù)是1,
因?yàn)?/span>AB= A'O,所以AB=。
因此,的幾何意義可以理解為數(shù)軸上所對(duì)應(yīng)的點(diǎn)A與1所對(duì)應(yīng)的點(diǎn)B之間的距離AB。
(2)求方程=2的解
因?yàn)閿?shù)軸上3與所對(duì)應(yīng)的點(diǎn)與1所對(duì)應(yīng)的點(diǎn)之間的距離都為2,所以方程的解為
(3)求不等式的解集
因?yàn)?/span>表示數(shù)軸上所對(duì)應(yīng)的點(diǎn)與1所對(duì)應(yīng)的點(diǎn)之間的距離,所以求不等式解集就轉(zhuǎn)化為求這個(gè)距離小于2的點(diǎn)所對(duì)應(yīng)的數(shù)的范圍。
請(qǐng)?jiān)趫D②的數(shù)軸上表示的解集,并寫出這個(gè)解集
探究二:探究的幾何意義
(1)探究的幾何意義
如圖③,在直角坐標(biāo)系中,設(shè)點(diǎn)M的坐標(biāo)為,過M作MP⊥x軸于P,作MQ⊥y軸于Q,則點(diǎn)P點(diǎn)坐標(biāo)(),Q點(diǎn)坐標(biāo)(),|OP|=,|OQ|=,
在Rt△OPM中,PM=OQ=y,則
因此的幾何意義可以理解為點(diǎn)M與原點(diǎn)O(0,0)之間的距離OM
(2)探究的幾何意義
如圖④,在直角坐標(biāo)系中,設(shè)點(diǎn) A'的坐標(biāo)為,由探究(二)(1)可知,
A'O=,將線段 A'O先向右平移1個(gè)單位,再向上平移5個(gè)單位,得到線段AB,此時(shí)A的坐標(biāo)為(),點(diǎn)B的坐標(biāo)為(1,5)。
因?yàn)?/span>AB= A'O,所以 AB=,因此的幾何意義可以理解為點(diǎn)A()與點(diǎn)B(1,5)之間的距離。
(3)探究的幾何意義
請(qǐng)仿照探究二(2)的方法,在圖⑤中畫出圖形,并寫出探究過程。
(4)的幾何意義可以理解為:_________________________.
拓展應(yīng)用:
(1)+的幾何意義可以理解為:點(diǎn)A與點(diǎn)E的距離與點(diǎn)AA與點(diǎn)F____________(填寫坐標(biāo))的距離之和。
(2)+的最小值為____________(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若定義:f(a,b)=(-a,b),g(m,n)=(m,-n),例如f(1,2)=(-1,2),g(-4,-5)=(-4,5),則g(f(3,-4))的值為( )
A.(3,-4)B.(-3,4)C.(3,4)D.(-3,-4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)舉行“中國(guó)夢(mèng)校園好聲音”歌手大賽,初、高中部根據(jù)初賽成績(jī),各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽.兩個(gè)隊(duì)各選出的5名選手的決賽成績(jī)?nèi)鐖D4所示.
(1)根據(jù)圖示填寫下表:
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
初中部 | 85 | ||
高中部 | 85 | 100 |
(2)結(jié)合兩隊(duì)成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)隊(duì)的決賽成績(jī)較好;
(3)計(jì)算兩隊(duì)決賽成績(jī)的方差并判斷哪一個(gè)代表隊(duì)選手成績(jī)較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知三邊作三角形,用到的基本作圖是( )
A. 作一個(gè)角等于已知角 B. 平分一個(gè)已知角
C. 在射線上截取一線段等于已知線段 D. 作一條直線的垂線
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,A,B,C三點(diǎn)坐標(biāo)分別是(0,0),(4,0),(3,2),以A,B,C三點(diǎn)
為頂點(diǎn)畫平行四邊形,則第四個(gè)頂點(diǎn)不可能在( ).
A.第一象限B.第二象限C.第三象限D.第四象限
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com