【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣3x+m與雙曲線y= 相交于點(diǎn)A(m,2).
(1)求雙曲線y= 的表達(dá)式;
(2)過動(dòng)點(diǎn)P(n,0)且垂直于x軸的直線與直線y=﹣3x+m及雙曲線y= 的交點(diǎn)分別為B和C,當(dāng)點(diǎn)B位于點(diǎn)C下方時(shí),求出n的取值范圍.
【答案】
(1)解:)∵點(diǎn)A(m,2)在直線y=﹣3x+m上,
∴2=﹣3m+m,
解得:m=﹣1,
∴A(﹣1,2).
∵點(diǎn)A在雙曲線 上,
∴ ,k=﹣2,
∴雙曲線的表達(dá)式為y=﹣ .
(2)解:令y=﹣3x﹣1=﹣ ,
解得:x1=﹣1,x2= .
觀察函數(shù)圖象可知:當(dāng)﹣1<n<0或n> 時(shí),反比例函數(shù)圖象在一次函數(shù)圖象的上方,即點(diǎn)B位于點(diǎn)C下方,
∴當(dāng)點(diǎn)B位于點(diǎn)C下方時(shí),n的取值范圍為﹣1<n<0或n> .
【解析】(1)由點(diǎn)A的坐標(biāo)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出m值,進(jìn)而可得出點(diǎn)A的坐標(biāo),再由點(diǎn)A的坐標(biāo)利用待定系數(shù)法即可求出雙曲線的表達(dá)式;(2)令﹣3x﹣1=﹣ ,可求出兩函數(shù)圖象交點(diǎn)的橫坐標(biāo),再根據(jù)兩函數(shù)圖象的上下位置關(guān)系即可得出當(dāng)點(diǎn)B位于點(diǎn)C下方時(shí),n的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P為定角∠AOB的平分線上的一個(gè)定點(diǎn),且∠MPN與∠AOB互補(bǔ),若∠MPN在繞點(diǎn)P旋轉(zhuǎn)的過程中,其兩邊分別與OA、OB相交于M、N兩點(diǎn),則以下結(jié)論:(1)PM=PN恒成立;(2)OM+ON的值不變;(3)四邊形PMON的面積不變;(4)MN的長(zhǎng)不變,其中正確的個(gè)數(shù)為( )
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是∠AOB的平分線上一點(diǎn),EC⊥OA,ED⊥OB,垂足分別為C、D.
(1)求證:ED=EC;
(2)求證:∠ECD=∠EDC;
(3)求證:OE垂直平分CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,拋物線y=mx2﹣2m2x+2交y軸于A點(diǎn),交直線x=4于B點(diǎn).
(1)拋物線的對(duì)稱軸為x=(用含m的代數(shù)式表示);
(2)若AB∥x軸,求拋物線的表達(dá)式;
(3)記拋物線在A,B之間的部分為圖象G(包含A,B兩點(diǎn)),若對(duì)于圖象G上任意一點(diǎn)P(xp , yp),yp≤2,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB∥DC,∠B=90°,F(xiàn)為DC上一點(diǎn),且AB=FC,E為AD上一點(diǎn),EC交AF于點(diǎn)G,EA=EG. 求證:ED=EC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八(2)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊(duì)各10人的比賽成績(jī)?nèi)缦卤?10分制):
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲隊(duì)成績(jī)的中位數(shù)是 分,乙隊(duì)成績(jī)的眾數(shù)是 分;
(2)計(jì)算乙隊(duì)的平均成績(jī)和方差;
(3)已知甲隊(duì)成績(jī)的方差是1.4,則成績(jī)較為整齊的是 隊(duì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下面例題的解法,然后解答問題:
例:若多項(xiàng)式2x3-x2+m分解因式的結(jié)果中有因式2x+1,求實(shí)數(shù)m的值.
解:設(shè)2x3-x2+m=(2x+1)·A(A為整式).
若2x3-x2+m=(2x+1)·A=0,則2x+1=0或A=0.
由2x+1=0,解得x=-.
∴x=-是方程2x3-x2+m=0的解.
∴2×(-)3-(-)2+m=0,即--+m=0.
∴m=.
請(qǐng)你模仿上面的方法嘗試解決下面的問題:
若多項(xiàng)式x4+mx3+nx-16分解因式的結(jié)果中有因式(x-1)和(x-2),求實(shí)數(shù)m,n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD 和 BE 是△ABC 的兩條高,∠BCD=45°,BF=FC,BE與 DF、DC分別交于點(diǎn) G、H,∠ACD=∠CBE.
(1)證明:AB=BC;
(2)判斷 BH 與 AE 之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)結(jié)合已知條件,觀察圖形,你還能發(fā)現(xiàn)什么結(jié)論?請(qǐng)寫出兩個(gè)(不與前面結(jié)論相同).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,OP是∠MON的平分線,請(qǐng)你利用該圖形畫一對(duì)以OP所在直線為對(duì)稱軸的全等三角形,并將添加的全等條件標(biāo)注在圖上.
請(qǐng)你參考這個(gè)作全等三角形的方法,解答下列問題:
(1)如圖2,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分別是∠BAC和∠BCA的平分線,AD、CE相交于點(diǎn)F,求∠EFA的度數(shù);
(2)在(1)的條件下,請(qǐng)判斷FE與FD之間的數(shù)量關(guān)系,并說明理由;
(3)如圖3,在△ABC中,如果∠ACB不是直角,而( 1 )中的其他條件不變,試問在(2)中所得結(jié)論是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com