【題目】如圖,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3).
(1)求點C到x軸的距離;
(2)分別求△ABC的三邊長;
(3)點P在y軸上,當△ABP的面積為6時,請直接寫出點P的坐標.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(1,2),B(3,1),C(-2,-1).
(1)在圖中作出關于軸對稱的.
(2)寫出點的坐標(直接寫答案).
A1_____________,B1______________,C1______________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)方法感悟:如圖①,在正方形ABCD中,點E、F分別為DC、BC邊上的點,且滿足∠EAF=45°,連接EF.將△ADE繞點A順時針旋轉(zhuǎn)90°得到△ABG,易證△GAF≌△EAF,從而得到結(jié)論:DE+BF=EF.根據(jù)這個結(jié)論,若CD=6,DE=2,求EF的長.
(2)方法遷移:如圖②,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是BC、CD上的點,且∠EAF=∠BAD,試猜想DE,BF,EF之間有何數(shù)量關系,證明你的結(jié)論.
(3)問題拓展:如圖③,在四邊形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分別是邊BC、CD延長線上的點,且∠EAF=∠BAD,試探究線段EF、BE、FD之間的數(shù)量關系,請直接寫出你的猜想(不必說明理由).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,∠ACB=90°,OC=2BO,AC=6,點B的坐標為(1,0),拋物線y=﹣x2+bx+c經(jīng)過A、B兩點.
(1)求點A的坐標;
(2)求拋物線的解析式;
(3)點P是直線AB上方拋物線上的一點,過點P作PD垂直x軸于點D,交線段AB于點E,使PE=DE.
①求點P的坐標;
②在直線PD上是否存在點M,使△ABM為直角三角形?若存在,求出符合條件的所有點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲汽車出租公司按每100千米150元收取租車費:乙汽車出租公司按每100千米50元收取租車費,另加管理費800元設用車里程為x千米租用甲、乙兩家公司的汽車費用分別為元、元
分別求出、與x之間的函數(shù)關系式;
判斷x在什么范圍內(nèi),租用乙公司的汽車費用比租用甲公司的汽車費用少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在解決問題:已知a=,求2a2-8a+1的值,他是這樣分析與解答的:
因為a===2-,
所以a-2=-.
所以(a-2)2=3,即a2-4a+4=3.
所以a2-4a=-1.
所以2a2-8a+1=2(a2-4a)+1=2×(-1)+1=-1.
請你根據(jù)小明的分析過程,解決如下問題:
(1)計算: = - .
(2)計算:+…+;
(3)若a=,求4a2-8a+1的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點C按順時針方向旋轉(zhuǎn),可以得到△DEC.若點D剛好落在AB邊上,取DE邊的中點F,連接FC,試判斷四邊形ACFD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一副直角三角板如圖放置,點C在FD的延長線上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,試求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),AB=7cm,AC⊥AB,BD⊥AB 垂足分別為 A、B,AC=5cm.點P 在線段 AB 上以 2cm/s 的速度由點 A 向點B 運動,同時,點 Q 在射線 BD 上運動.它們運 動的時間為 t(s)(當點 P 運動結(jié)束時,點 Q 運動隨之結(jié)束).
(1)若點 Q 的運動速度與點 P 的運動速度相等,當 t=1 時,△ACP 與△BPQ 是否全等, 并判斷此時線段 PC 和線段 PQ 的位置關系,請分別說明理由;
(2)如圖(2),若“AC⊥AB,BD⊥AB” 改為 “∠CAB=∠DBA=60°”,點 Q 的運動速 度為 x cm/s,其他條件不變,當點 P、Q 運動到某處時,有△ACP 與△BPQ 全等,求出相應的 x、t 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com