閱讀下面材料:

小偉遇到這樣一個問題:如圖1,在正三角形ABC內(nèi)有一點P,且PA="3" ,PB=4,PC=5,求∠APB的度數(shù).

小偉是這樣思考的:如圖2,利用旋轉(zhuǎn)和全等的知識構(gòu)造△,連接,得到兩個特殊的三角形,從而將問題解決.

請你回答:圖1中∠APB的度數(shù)等于     .

參考小偉同學(xué)思考問題的方法,解決下列問題:

(1)如圖3,在正方形ABCD內(nèi)有一點P,且PA=,PB=1,PD=,則∠APB的度數(shù)等于     ,正方形的邊長為     

(2)如圖4,在正六邊形ABCDEF內(nèi)有一點P,且PA=,PB=1,PF=,則∠APB的度數(shù)等于     ,正六邊形的邊長為     

 

【答案】

;(1)135°,;(2)120°,

【解析】

試題分析:根據(jù)旋轉(zhuǎn)的性質(zhì)結(jié)合勾股定理的逆定理,等邊三角形的判定和性質(zhì)即可得到結(jié)果;

(1)參照題目給出的解題思路,可將△ABP繞點A逆時針旋轉(zhuǎn)90°,得到△A DP′,根據(jù)旋轉(zhuǎn)的性質(zhì)知:△ABP≌△A DP′,進(jìn)而可判斷出△APP′是等腰直角三角形,可得∠A P′P=45°;然后得到△DPP′是直角三角形,即可求得結(jié)果;

(2)方法同(2),再結(jié)合正六邊形的性質(zhì)即可求得結(jié)果.

由題意得△APP′是等邊三角形,則∠A P′C=60°

∴△CPP′是直角三角形

∴∠CP′P=90°

∴∠AP′C=150°

∴∠APB=150°;

(1)將△ABP繞點A逆時針旋轉(zhuǎn)90°,得到△A DP′,

由題得△ABP≌△A DP′,△APP′是等腰直角三角形,

∴∠AP′P=45°

∴△DPP′是直角三角形,

∴∠DP′P=90°

∴∠DP′A=135°

∴∠APB=135°,正方形的邊長為;

(2)方法同(2),∠APB的度數(shù)等于120°,正六邊形的邊長為

考點:勾股定理,正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì)

點評:解答本題的關(guān)鍵是熟練掌握旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后的兩個圖形全等,對應(yīng)點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對應(yīng)點到旋轉(zhuǎn)中心的距離相等.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面材料:
小偉遇到這樣一個問題,如圖1,在梯形ABCD中,AD∥BC,對角線AC,BD相交于點O.若梯形ABCD的面積為1,試求以AC,BD,AD+BC的長度為三邊長的三角形的面積.
精英家教網(wǎng)
小偉是這樣思考的:要想解決這個問題,首先應(yīng)想辦法移動這些分散的線段,構(gòu)造一個三角形,再計算其面積即可.他先后嘗試了翻折,旋轉(zhuǎn),平移的方法,發(fā)現(xiàn)通過平移可以解決這個問題.他的方法是過點D作AC的平行線交BC的延長線于點E,得到的△BDE即是以AC,BD,AD+BC的長度為三邊長的三角形(如圖2).
參考小偉同學(xué)的思考問題的方法,解決下列問題:
如圖3,△ABC的三條中線分別為AD,BE,CF.
(1)在圖3中利用圖形變換畫出并指明以AD,BE,CF的長度為三邊長的一個三角形(保留畫圖痕跡);
(2)若△ABC的面積為1,則以AD,BE,CF的長度為三邊長的三角形的面積等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面材料:
小偉遇到這樣一個問題:如圖1,在正三角形ABC內(nèi)有一點P,且PA=3,PB=4,PC=5,求∠APB的度數(shù).
小偉是這樣思考的:如圖2,利用旋轉(zhuǎn)和全等的知識構(gòu)造△AP′C,連接PP′,得到兩個特殊的三角形,從而將問題解決.
請你回答:圖1中∠APB的度數(shù)等于
150°
150°

參考小偉同學(xué)思考問題的方法,解決下列問題:
(1)如圖3,在正方形ABCD內(nèi)有一點P,且PA=2
2
,PB=1,PD=
17
,則∠APB的度數(shù)等于
135°
135°
,正方形的邊長為
13
13

(2)如圖4,在正六邊形ABCDEF內(nèi)有一點P,且PA=2,PB=1,PF=
13
,則∠APB的度數(shù)等于
120°
120°
,正六邊形的邊長為
7
7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•延慶縣二模)閱讀下面材料:
小偉遇到這樣一個問題:如圖1,在△ABC(其中∠BAC是一個可以變化的角)中,AB=2,AC=4,以BC為邊在BC的下方作等邊△PBC,求AP的最大值.
小偉是這樣思考的:利用變換和等邊三角形將邊的位置重新組合.他的方法是以點B為旋轉(zhuǎn)中心將△ABP逆時針旋轉(zhuǎn)60°得到△A′BC,連接A′A,當(dāng)點A落在A′C上時,此題可解(如圖2).
請你回答:AP的最大值是
6
6

參考小偉同學(xué)思考問題的方法,解決下列問題:
如圖3,等腰Rt△ABC.邊AB=4,P為△ABC內(nèi)部一點,則AP+BP+CP的最小值是
2
2
+2
6
(或不化簡為
32+16
3
2
2
+2
6
(或不化簡為
32+16
3
.(結(jié)果可以不化簡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•門頭溝區(qū)一模)閱讀下面材料:
小偉遇到這樣一個問題:如圖1,在正方形ABCD中,點E、F分別為DC、BC邊上的點,∠EAF=45°,連接EF,求證:DE+BF=EF.

小偉是這樣思考的:要想解決這個問題,首先應(yīng)想辦法將這些分散的線段集中到同一條線段上.他先后嘗試了平移、翻折、旋轉(zhuǎn)的方法,發(fā)現(xiàn)通過旋轉(zhuǎn)可以解決此問題.他的方法是將△ADE繞點A順時針旋轉(zhuǎn)90°得到△ABG(如圖2),此時GF即是DE+BF.
請回答:在圖2中,∠GAF的度數(shù)是
45°
45°

參考小偉得到的結(jié)論和思考問題的方法,解決下列問題:
(1)如圖3,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一點,若∠BAE=45°,DE=4,則BE=
58
7
58
7

(2)如圖4,在平面直角坐標(biāo)系xOy中,點B是x軸上一動點,且點A(-3,2),連接AB和AO,并以AB為邊向上作正方形ABCD,若C(x,y),試用含x的代數(shù)式表示y,則y=
x+1
x+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆北京市昌平區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:解答題

閱讀下面材料:
小偉遇到這樣一個問題:如圖1,在正三角形ABC內(nèi)有一點P,且PA="3" ,PB=4,PC=5,求∠APB的度數(shù).
小偉是這樣思考的:如圖2,利用旋轉(zhuǎn)和全等的知識構(gòu)造△,連接,得到兩個特殊的三角形,從而將問題解決.

請你回答:圖1中∠APB的度數(shù)等于     .
參考小偉同學(xué)思考問題的方法,解決下列問題:
(1)如圖3,在正方形ABCD內(nèi)有一點P,且PA=,PB=1,PD=,則∠APB的度數(shù)等于     ,正方形的邊長為     ;
(2)如圖4,在正六邊形ABCDEF內(nèi)有一點P,且PA=,PB=1,PF=,則∠APB的度數(shù)等于     ,正六邊形的邊長為     

查看答案和解析>>

同步練習(xí)冊答案