【題目】校車(chē)安全是近幾年社會(huì)關(guān)注的重大問(wèn)題,安全隱患主要是超速和超載.某中學(xué)數(shù)學(xué)活動(dòng)小組設(shè)計(jì)了如下檢測(cè)公路上行駛的汽車(chē)速度的實(shí)驗(yàn):先在公路旁邊選取一點(diǎn)C,再在筆直的車(chē)道L上確定點(diǎn)D,使CD與L垂直,測(cè)得CD的長(zhǎng)等于24米,在L上點(diǎn)D的同側(cè)取點(diǎn)A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的長(zhǎng)(結(jié)果保留根號(hào));
(2)已知本路段對(duì)校車(chē)限速為45千米/小時(shí),若測(cè)得某輛校車(chē)從A到B用時(shí)2秒,這輛校車(chē)是否超速?說(shuō)明理由.(參考數(shù)據(jù): ≈1.73, ≈1.41)
【答案】
(1)解:由題意得,
在Rt△ADC中,AD= = =24 ≈36.33(米),
在Rt△BDC中,BD= = =8 ,
則AB=AD﹣BD=16
(2)解:不超速.
理由:∵汽車(chē)從A到B用時(shí)2秒,
∴速度為24.2÷2=12.1(米/秒),
∵12.1×3600=43560(米/時(shí)),
∴該車(chē)速度為43.56千米/小時(shí),
∵小于45千米/小時(shí),
∴此校車(chē)在AB路段不超速
【解析】(1)分別在Rt△ADC與Rt△BDC中,利用正切函數(shù),即可求得AD與BD的長(zhǎng),繼而求得AB的長(zhǎng);(2)由從A到B用時(shí)2秒,即可求得這輛校車(chē)的速度,比較與40千米/小時(shí)的大小,即可確定這輛校車(chē)是否超速.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=120°,射線OC從OA開(kāi)始,繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)的速度為每分鐘20°;射線OD從OB開(kāi)始,繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)的速度為每分鐘5°,OC和OD同時(shí)旋轉(zhuǎn),設(shè)旋轉(zhuǎn)的時(shí)間為t(0≤t≤15).
(1)當(dāng)t為何值時(shí),射線OC與OD重合;
(2)當(dāng)t為何值時(shí),∠COD=90°;
(3)試探索:在射線OC與OD旋轉(zhuǎn)的過(guò)程中,是否存在某個(gè)時(shí)刻,使得射線OC,OB與OD中的某一條射線是另兩條射線所夾角的角平分線?若存在,請(qǐng)求出所有滿足題意的t的取值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)3﹣5﹣(﹣1)﹣3+12﹣(﹣12)
(2)|﹣|×[﹣32÷(﹣)2+(﹣2)3]
(3)先化簡(jiǎn),再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x、y滿足|x﹣|+(y+1)2=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)作出△ABC關(guān)于y軸對(duì)稱(chēng)的△ABlCl;
(2)點(diǎn)P在x軸上,且點(diǎn)P到點(diǎn)B與點(diǎn)C的距離之和最小,直接寫(xiě)出點(diǎn)P的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線x=﹣1,且拋物線經(jīng)過(guò)A(1,0),C(0,3)兩點(diǎn),與x軸交于點(diǎn)B.
(1)若直線y=mx+n經(jīng)過(guò)B、C兩點(diǎn),求直線BC和拋物線的解析式;
(2)在拋物線的對(duì)稱(chēng)軸x=﹣1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求出點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)P為拋物線的對(duì)稱(chēng)軸x=﹣1上的一個(gè)動(dòng)點(diǎn),求使△BPC為直角三角形的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是矩形,點(diǎn)E在CD邊上,點(diǎn)F在DC延長(zhǎng)線上,AE=BF.
(1)求證:四邊形ABFE是平行四邊形;
(2)若∠BEF=∠DAE,AE=3,BE=4,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AB=BC=2 ,E、F分別是AD、CD的中點(diǎn),連接BE、BF、EF.若四邊形ABCD的面積為6,則△BEF的面積為( )
A.2
B.
C.
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A在線段BG上,四邊形ABCD和四邊形DEFG都是正方形,面積分別是10和19,則△CDE的面積為_____________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com