【題目】在“不闖紅燈,珍惜生命”活動中,文明中學(xué)的王欣和李好兩位同學(xué)某天來到城區(qū)中心的十字路口,觀察、統(tǒng)計上午7::00中闖紅燈的人次,制作了兩個數(shù)據(jù)統(tǒng)計圖圖和.
圖a提供的五個數(shù)據(jù)各時段闖紅燈人次的中位數(shù)是______,平均數(shù)是______;
在扇形統(tǒng)計圖中,求未成年人類對應(yīng)扇形的圓心角的度數(shù),并估計一個月按30天計算上午7::00在該十字路口闖紅燈的未成年人約有多少人次.
根據(jù)統(tǒng)計圖提供的信息向交通管理部門提出一條合理化建議.
【答案】(1) 15人次,20人次;(2)人次;(3)加強(qiáng)對點(diǎn)時段的交通管理.
【解析】
根據(jù)統(tǒng)計圖中的數(shù)據(jù)10、15、15、20、40結(jié)合中位數(shù)定義可得;先求出五個數(shù)據(jù)的和,再求平均數(shù)即可;
用乘以未成年人所占比例即可,利用樣本估計總體,求出一月中在該十字路口闖紅燈的未成年人數(shù)即可;
根據(jù)圖中數(shù)據(jù)的大小進(jìn)行合理分析即可.
中位數(shù)為人次,平均數(shù)為人次;
故答案為:15人次,20人次;
未成年人類對應(yīng)扇形的圓心角的度數(shù)為,
估計一個月按30天計算上午7::00在該十字路口闖紅燈的未成年人約有人次;
加強(qiáng)對點(diǎn)時段的交通管理.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AE⊥BC,AF⊥CD,垂足分別為E,F(xiàn),且BE=DF.
(1)求證:ABCD是菱形;
(2)若AB=5,AC=6,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn)是線段所在平面內(nèi)任意一點(diǎn),分別以、為邊,在同側(cè)作等邊和等邊,聯(lián)結(jié)、交于點(diǎn).
(1)如圖1,當(dāng)點(diǎn)在線段上移動時,線段與的數(shù)量關(guān)系是:________;
(2)如圖2,當(dāng)點(diǎn)在直線外,且,仍分別以、為邊,在 同側(cè)作等邊和等邊,聯(lián)結(jié)、交于點(diǎn).(1)的結(jié)論是否還存在?若成立,請證明;若不成立,請說明理由.此時是否隨的大小發(fā)生變化?若變化,寫出變化規(guī)律,若不變,請求出的度數(shù);
(3)如圖3,在(2)的條件下,聯(lián)結(jié),求證: 平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,點(diǎn)D是邊BC上的點(diǎn)(與B,C兩點(diǎn)不重合),過點(diǎn)D作DE∥AC,DF∥AB,分別交AB,AC于E,F(xiàn)兩點(diǎn),下列說法正確的是( 。
A. 若AD⊥BC,則四邊形AEDF是矩形
B. 若AD垂直平分BC,則四邊形AEDF是矩形
C. 若BD=CD,則四邊形AEDF是菱形
D. 若AD平分∠BAC,則四邊形AEDF是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、CD是的直徑,于E,連接BD.
如圖1,求證:;
如圖2,F是OC上一點(diǎn),,求證:;
在的條件下,連接BC,AF的延長線交BC于H,若,,求HF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與軸相交于,兩點(diǎn),與軸交于點(diǎn),為頂點(diǎn).
求直線的解析式和頂點(diǎn)的坐標(biāo);
已知,點(diǎn)是直線下方的拋物線上一動點(diǎn),作于點(diǎn),當(dāng)最大時,有一條長為的線段(點(diǎn)在點(diǎn)的左側(cè))在直線上移動,首尾順次連接、、、構(gòu)成四邊形,請求出四邊形的周長最小時點(diǎn)的坐標(biāo);
如圖,過點(diǎn)作軸交直線于點(diǎn),連接,點(diǎn)是線段上一動點(diǎn),將沿直線折疊至,是否存在點(diǎn)使得與重疊部分的圖形是直角三角形?若存在,請求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABE≌△ACD.
(1)如果BE=6,DE=2,求BC的長;
(2)如果∠BAC=75°,∠BAD=30°,求∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=4cm,BC=8cm,動點(diǎn)P從點(diǎn)A出發(fā),以1cm/s的速度沿AB向點(diǎn)B運(yùn)動,動點(diǎn)Q從點(diǎn)B出發(fā),以2cm/s秒的速度沿BC向點(diǎn)C運(yùn)動.P、Q分別從A、B同時出發(fā),設(shè)運(yùn)動時間為t秒.(如圖1)
(1)用含t的代數(shù)式表示下列線段長度:
①PB=__________cm,②QB=_____cm,③CQ=_________cm.
(2)當(dāng)△PBQ的面積等于3時,求t的值.
(3) (如圖2),若E為邊CD中點(diǎn),連結(jié)EQ、AQ.當(dāng)以A、B、Q為頂點(diǎn)的三角形與△EQC相似時,直接寫出滿足條件的t的所有值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com