【題目】如圖,已知Rt△ABC中,CAB=60°,點O為斜邊AB上一點,且OA=2,以OA為半徑的⊙O與BC相切于D,與AC交于點E,連接AD.
(1)求線段CD的長;
(2)求⊙O與Rt△ABC重疊部分的面積.(結果保留準確值)
【答案】(1)CD=;(2).
【解析】
(1)連接OD,由切線的性質和直角三角形的性質得出OB=2OD=4,BD=OD=2,得出AB=OA+OB=6,AC=AB=3,BC=AC=3,即可得出結果;
(2)連接OE,證出△OAE是等邊三角形,得出∠AOE=60°,∠EOG=120°,作EF⊥OA于F,則OF=1,EF=OF=,⊙O與Rt△ABC重疊部分的面積=△AOE的面積+扇形OEDG的面積,即可得出結果,
(1)連接OD,如圖1所示:
∵以OA為半徑的⊙O與BC相切于D,
∴∠ODB=90°.
∵OD=OA=2,∠C=90°,∠CAB=60°,
∴∠B=30°,
∴OB=2OD=4,BD=OD=2,
∴AB=OA+OB=6,
∴AC=AB=3,
∴BC=AC=3,
∴CD=BC﹣BD=;
(2)連接OE,如圖2所示:
則OA=OE.
∵∠CAB=60°,
∴△OAE是等邊三角形,
∴∠AOE=60°,
∴∠EOG=120°,
作EF⊥OA于F,
則OF=1,EF=OF=,
∴⊙O與Rt△ABC重疊部分的面積=△AOE的面積+扇形OEDG的面積=×2×+=+.
科目:初中數學 來源: 題型:
【題目】如圖,一勘測人員從山腳點出發(fā),沿坡度為的坡面行至點處時,他的垂直高度上升了米;然后再從點處沿坡角為的坡面以米/分鐘的速度到達山頂點時,用了分鐘.
(1)求點到點之間的水平距離;
(2)求山頂點處的垂直高度是多少米?(結果保留整數)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】費爾茲獎是國際上享有崇高榮譽的一個數學獎項,每4年評選一次,在國際數學家大會上頒給有卓越貢獻的年齡不超過40歲的年輕數學家,美籍華人丘成桐1982年獲得費爾茲獎.為了讓學生了解費爾茲獎得主的年齡情況,我們查取了截止到2018年60名費爾茲獎得主獲獎時的年齡數據,并對數據進行整理、描述和分析.下面給出了部分信息.
a.截止到2018年費爾茲獎得主獲獎時的年齡數據的頻數分布直方圖如圖1(數據分成5組,各組是28≤x<31,31≤x<34,34≤x<37,37≤x<40,x≥40):
b.如圖2,在a的基礎上,畫出扇形統(tǒng)計圖;
c.截止到2018年費爾茲獎得主獲獎時的年齡在34≤x<37這一組的數據是:
36 | 35 | 34 | 35 | 35 | 34 | 34 | 35 | 36 | 36 | 36 | 36 | 34 | 35 |
d.截止到2018年時費爾茲獎得主獲獎時的年齡的平均數、中位數、眾數如下:
年份 | 平均數 | 中位數 | 眾數 |
截止到2018 | 35.58 | m | 37,38 |
根據以上信息,回答下列問題:
(1)依據題意,補全頻數直方圖;
(2)31≤x<34這組的圓心角度數是度,并補全扇形統(tǒng)計圖;
(3)統(tǒng)計表中中位數m的值是;
(4)根據以上統(tǒng)計圖表試描述費爾茲獎得主獲獎時的年齡分布特征.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知直線y=﹣x+7a+1與直線y=2x﹣2a+4同時經過點P,點Q是以M(0,﹣1)為圓心,MO為半徑的圓上的一個動點,則線段PQ的最小值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將邊長為1的正方形紙片ABCD折疊,使點B的對應點M落在邊CD上(不與點C、D重合),折痕為EF,AB的對應線段MG交AD于點N.以下結論正確的有( 。佟MBN=45°;②△MDN的周長是定值;③△MDN的面積是定值.
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),二次函數的圖象與軸、直線的交點分別為點、.
圖(1) 圖(2) (備用圖)
(1)_________,_________,=_________;
(2)連接AB,點是拋物線上一點(異于點A),且,求點的坐標;
(3)如圖(2),點、是線段上的動點,且.設點的橫坐標為.
①過點、分別作軸的垂線,與拋物線相交于點、,連接.當取得最大值時,求的值并判斷四邊形的形狀;
②連接、,求為何值時,取得最小值,并求出這個最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知⊙O的半徑為5,EF是長為8的弦,OG⊥EF于點G,點A在GO的延長線上,且AO=13.弦EF從圖1的位置開始繞點O逆時針旋轉,在旋轉過程中始終保持OG⊥EF,如圖2.
[發(fā)現(xiàn)]在旋轉過程中,
(1)AG的最小值是 ,最大值是 .
(2)當EF∥AO時,旋轉角α= .
[探究]若EF繞點O逆時針旋轉120°,如圖3,求AG的長.
[拓展]如圖4,當AE切⊙O于點E,AG交EO于點C,GH⊥AE于H.
(1)求AE的長.
(2)此時EH= ,EC= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=x2+mx+n與x軸相交于點A、B兩點,過點B的直線y=x+b交拋物線于另一點C(-5,6),點D是線段BC上的一個動點(點D與點B、C不重合),作DE∥AC,交該拋物線于點E,
(1)求m,n,b的值;
(2)求tan∠ACB;
(3)探究在點D運動過程中,是否存在∠DEA=45°,若存在,則求此時線段AE的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com