閱讀下面的情境對話,然后解答問題

(1)根據(jù)“奇異三角形”的定義,請你判斷小華提出的命題:“等邊三角形一定是奇異三角形”是真命題還是假命題?
(2)在RtABC 中, ∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若RtABC是奇異三角形,求a:b:c;
(3)如圖,AB是⊙O的直徑,C是上一點(diǎn)(不與點(diǎn)A、B重合),D是半圓的中點(diǎn),CD在直徑AB的兩側(cè),若在⊙O內(nèi)存在點(diǎn)E使得AE=AD,CB=CE.

1求證:ACE是奇異三角形;
2當(dāng)ACE是直角三角形時,求∠AOC的度數(shù).

解:(1)真命題
(2)在RtABC 中a2+b2= c2,
∵c>b>a>0
∴2c2>a2+b2,2a2<c2+b2
∴若RtABC是奇異三角形,一定有2b2=c2+ a2
∴2b2=a2+(a2+b2
∴b2=2a2 得:b=a
∵c2=b2+ a2=3a2
∴c=
∴a:b: c=
(3)1∵AB是⊙O的直徑ACBADB=90°
在RtABC 中,AC2+BC2=AB2
在RtADB 中,AD2+BD2=AB2
∵點(diǎn)D是半圓的中點(diǎn)
∴=
∴AD=BD
∴AB2=AD2+BD2=2AD2
∴AC2+CB2=2AD2
又∵CB=CE,AE=AD
∴AC2=CE2=2AE2
ACE是奇異三角形
2由1可得ACE是奇異三角形
∴AC2=CE2=2AE2
當(dāng)ACE是直角三角形時

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江溫州育英學(xué)校八年級10月月考數(shù)學(xué)試卷1(解析版) 題型:解答題

閱讀下面的情境對話,然后解答問題

(1)根據(jù)“奇異三角形”的定義,請你判斷小華提出的命題:“等邊三角形一定是奇異三角形”是真命題還是假命題?

(2)在RtABC 中, ∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若RtABC是奇異三角形,求a:b:c;

(3)如圖,AB是⊙O的直徑,C是上一點(diǎn)(不與點(diǎn)A、B重合),D是半圓的中點(diǎn),CD在直徑AB的兩側(cè),若在⊙O內(nèi)存在點(diǎn)E使得AE=AD,CB=CE.

1求證:ACE是奇異三角形;

2當(dāng)ACE是直角三角形時,求∠AOC的度數(shù).

 

查看答案和解析>>

同步練習(xí)冊答案