【題目】拋物線與x軸交于A,B兩點(B在點A的右側),A,B兩點的坐標分別為(-2,0),(8,0),y軸交于點C(0,-4),連接BC,BC為一邊,O為對稱中心作菱形BDEC,Px軸上的一個動點,設點P的坐標為(m,0),過點Px軸的垂線L交拋物線于點Q,BD于點M.

(1)求拋物線的解析式;

(2)當點P在線段OB上運動時試探究m為何值時,四邊形CQMD是平行四邊形?

(3)位于第四象限內的拋物線上是否存在點N,使得△BCN的面積最大?若存在,求出N點的坐標,及△BCN面積的最大值若不存在,請說明理由.

【答案】(1) 拋物線解析式為y=x2-x-4;(2) m=4,四邊形CQMD是平行四邊形; (3) SBCN= 8.

【解析】

(1)用待定系數(shù)法直接求出拋物線解析式;
(2)由菱形的對稱性可知,點D的坐標,根據(jù)待定系數(shù)法可求直線BD的解析式,根據(jù)平行四邊形的性質可得關于m的方程,求得m的值;再根據(jù)平行四邊形的判定可得四邊形CQMD的形狀;
(3)先判斷出點N在平行于BC且與拋物線只有一個交點時的位置,確定出點N的坐標,用面積和差求出三角形BCN的面積.

(1)設拋物線的解析式為y=ax2+bx+c,

根據(jù)題意得,

拋物線解析式為y=x2-x-4.

(2)C(0,-4),

由菱形的對稱性可知,點D的坐標為(0,4).

設直線BD的解析式為y=kx+b',則解得k=-,b'=4.

直線BD的解析式為y=-x+4.

lx軸,

M的坐標為,點Q的坐標為.

如圖,當MQ=DC時,四邊形CQMD是平行四邊形,

=4-(-4).化簡得m2-4m=0,解得m1=0(不合題意舍去),m2=4.

m=4時,四邊形CQMD是平行四邊形.

(3)存在,理由:

當過點N平行于直線BC的直線與拋物線只有一個交點時,BCN的面積最大.

B(8,0),C(0,-4),

BC=4.直線BC解析式為y=x-4,設過點N平行于直線BC的直線L解析是為y=x+n

拋物線解析式為y=x2-x-4,聯(lián)立①②得,x2-8x-4(n+4)=0,

Δ=64+16(n+4)=0,

n=-8,

直線L解析式為y=x-8,將n=-8代入中得,x2-8x+16=0

x=4,

y=-6,

N(4,-6),

如圖,過點NNGAB,

SBCN=S四邊形OCNG+SMNG-SOBC=(4+6)×4+(8-4)×6-×8×6=8.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某貨運公司接到噸物資運載任務,現(xiàn)有甲、乙、丙三種車型的汽車供選擇,每輛車的運載能力和運費如表:

車型

汽車運載量(/)

5

8

10

汽車運費(/)

400

500

600

1)甲種車型的汽車輛,乙種車型的汽車輛,丙種車型的汽車輛,它們一次性能運載    噸貨物.

2)若全部物資都用甲、乙兩種車型的汽車來運送,需運費元,求需要甲、乙兩種車型的汽車各多少輛?

3)為了節(jié)省運費,該公司打算用甲、乙、丙三種車型的汽車共輛同時參與運送,請你幫貨運公司設計派車方案;并求出各種派車方案的運費.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,A=40°,ABC的外角∠CBD的平分線BEAC的延長線于點E.

(1)求∠CBE的度數(shù);

(2)過點DDFBE,交AC的延長線于點F,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學習幾何的一個重要方法就是要學會抓住基本圖形,讓我們來做一次研究性學習.

1)如圖①所示的圖形,像我們常見的學習用品一圓規(guī),我們常把這樣的圖形叫做規(guī)形圖.請你觀察規(guī)形圖,試探究∠BOC與∠A、∠B、∠C之間的關系,并說明理由:

2)如圖②,若ABC中,BO平分∠ABC,CO平分∠ACB,且它們相交于點O,試探究∠BOC與∠A的關系;

3)如圖③,若ABC中,∠ABO=ABC,∠ACO=ACB,且BO、CO相交于點O,請直接寫出∠BOC與∠A的關系式為    _

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)場學習題:

問題背景:

ABC中,ABBC、AC三邊的長分別為、,求這個三角形的面積.

小輝同學在解答這道題時,先建立一個正方形網格(每個小正方形的邊長為1),再在網格中畫出格點ABC(即ABC三個頂點都在小正方形的頂點處),如圖1所示,這樣不需求ABC的高,而借用網格就能計算出它的面積.

1)請你將ABC的面積直接填寫在橫線上.

思維拓展:

2)我們把上述求ABC面積的方法叫做構圖法,若ABC三邊的長分別為a2a、aa0),請利用圖2的正方形網格(每個小正方形的邊長為a)畫出相應的ABC,并求出它的面積是:

探索創(chuàng)新:

3)若ABC三邊的長分別為、m0n0,m≠n),請運用構圖法在圖3指定區(qū)域內畫出示意圖,并求出ABC的面積為:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在ABC中,AB=13,BC=12,點D,E分別是AB,BC的中點,連接DE,CD,如果DE=2.5,那么ACD的周長是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店銷售一種品牌電腦,四月份營業(yè)額為萬元.為擴大銷售,在五月份將每臺電腦按原價折銷售,銷售量比四月份增加臺,營業(yè)額比四月份多了千元.

求四月份每臺電腦的售價.

六月份該商店又推出一種團購促銷活動,若購買不超過臺,每臺按原價銷售:若超過臺,超過的部分折銷售,要想在六月份團購比五月份團購更合算,則至少要買多少臺電腦?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB=AC,EB=EC,AE的延長線交BCD,則圖中全等的三角形共有_____對.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】全面兩孩政策實施后,甲,乙兩個家庭有各自的規(guī)劃.假定生男生女的概率相,回答下列問題

(1家庭已有一個男孩,準備生一個孩子,第二個孩子是女孩的率是 ;

(2)乙家庭沒有孩子準備生兩個孩子,求至少有一個孩子是女孩的概率.

查看答案和解析>>

同步練習冊答案