【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象開口向上,對稱軸為直線x=1,圖象經(jīng)過(3,0).下列結(jié)論中,正確的一項是( )
A. <0
B. <0
C. <0
D.4acb20
【答案】D
【解析】A.依題和圖可得:a0,c0,
又∵x=-=10,
∴b0,
∴abc0,
∴A不符合題意.
B.∵x=-=1,
∴b=-2a,
∴b+2a=0,
∴B不符合題意.
C.設(shè)拋物線與x軸的另一個交點為x,
∴x=-=1=,
∴x=-1,
∴a-b+c=0.
∴C不符合題意.
D.由圖可知:
b2-4ac0,
∴4ac-b20,
∴D符合題意.
所以答案是:D
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識,掌握增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小,以及對二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的理解,了解二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標(biāo):(0,c).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】證明:兩條平行線被第三條直線所截,一組同位角的平分線互相平行.
已知:如圖,_______________________.
求證:_____________________________.
證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,長方形紙片ABCD的長AD=9cm,寬AB=3cm,將其折疊,使點D與點B重合.
求:(1)折疊后DE的長;(2)以折痕EF為邊的正方形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一架長2.5米的梯子AB如圖所示斜靠在一面墻上,這時梯足B離墻底C(∠C=90°)的距離BC為0.7米.
(1)求此時梯頂A距地面的高度AC;
(2)如果梯頂A下滑0.9米,那么梯足B在水平方向,向右滑動了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了開展“陽光體育運動”,計劃購買籃球、足球共60個,已知每個籃球的價格為70元,每個足球的價格為80元.
(1)若購買這兩類球的總金額為4600元,求籃球、足球各買了多少個?
(2)若購買籃球的總金額不超過購買足球的總金額,求最多可購買多少個籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出
(1)如圖①,在正方形ABCD中,對角線AC=8,則正方形ABCD的面積為 ;
問題探究
(2)如圖②,在四邊形ABCD中,AD=AB,∠DAB=∠DCB=90°,∠ADC+∠ABC=180°,若四邊形ABCD的面積為8,求對角線AC的長;
問題解決
(3)如圖③,四邊形ABCD是張叔叔要準(zhǔn)備開發(fā)的菜地示意圖,其中邊AD和AB是準(zhǔn)備用磚來砌的磚墻,且滿足AD=AB,∠DAB=90°,邊DC和CB是準(zhǔn)備用現(xiàn)有的長度分別為3米和7米的竹籬笆來圍成的籬笆墻,即DC=3米,CB=7米.按照這樣的想法,張叔叔圍成的菜園里對角線AC的長是否存在最大值呢?若存在,求出這個最大值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com