【題目】如圖,平行四邊形ABCD中,E,F是對角線BD上的兩點,如果添加一個條件使△ABE≌△CDF,則添加的條件不能是( )
A. AE=CFB. BE=FDC. BF=DED. ∠1=∠2
【答案】A
【解析】
利用平行四邊形的性質以及全等三角形的判定分別分得出即可.
A. 當AE=CF無法得出△ABE≌△CDF,故此選項符合題意;
B. 當BE=FD,
∵平行四邊形ABCD中,
∴AB=CD,∠ABE=∠CDF,
在△ABE和△CDF中
,
∴△ABE≌△CDF(SAS),故此選項錯誤;
C. 當BF=ED,
∴BE=DF,
∵平行四邊形ABCD中,
∴AB=CD,∠ABE=∠CDF,
在△ABE和△CDF中
∴△ABE≌△CDF(SAS),故此選項錯誤;
D. 當∠1=∠2,
∵平行四邊形ABCD中,
∴AB=CD,∠ABE=∠CDF,
在△ABE和△CDF中
∴△ABE≌△CDF(ASA),故此選項錯誤;
故選:A.
科目:初中數學 來源: 題型:
【題目】定義:只有一組對角是直角的四邊形叫做損矩形,連結它的兩個非直角頂點的線段叫做這個損矩形的直徑.
(1)識圖:如圖(1),損矩形ABCD,∠ABC=∠ADC=90°,則該損矩形的直徑線段為 .
(2)探究:在上述損矩形ABCD內,是否存在點O,使得A、B、C、D四個點都在以O為圓心的同一圓上?如果有,請指出點O的具體位置;若不存在,請說明理由.
(3)實踐:已知如圖三條線段a、b、c,求作相鄰三邊長順次為a、b、c的損矩形ABCD(尺規(guī)作圖,保留作圖痕跡).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知A=a2-2ab+b2,B=a2+2ab+b2.
(1)求A+B;
(2)求(A+B);
(3)如果2A-3B+C=0,那么C的表達式是什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某水果批發(fā)商欲將A市的一批水果運往B市銷售,有火車和汽車兩種運輸工具,運輸過程中的損耗均為160元/時。有關數據如下:
運輸工具 | 平均速度(千米/時) | 運費(元/千米) | 裝卸費(元) |
火車 | 100 | 18 | 1800 |
汽車 | 80 | 22 | 1000 |
(1)如果汽車的總支出費用比火車費用多960元,求出A市與B市之間的路程是多少千米?請列方程解答。
(2)如果A市與C市之間的距離為300千米,要想將這批水果運往C市銷售。選擇哪種運輸工具比較合算呢?請通過計算說明你的理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,線段CD在線段AB上,且CD=2,若線段AB的長度是一個正整數,則圖中以A,B,C,D這四點中任意兩點為端點的所有線段長度之和可能是( 。
A. 29
B. 28
C. 30
D. 31
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,△ACE為AC為底的等腰直角三角形,連接BE交AD、AC分別于F. N,CM平分∠ACB交BN于M,下列結論:(1)BE⊥ED;(2)AB=AF;(3)EM=EA;(4)AM平分∠BAC,其中正確的結論有( )
A. 1個B. 2個
C. 3個D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=7,AC=6,∠A=45°,點D、E分別在邊AB、BC上,將△BDE沿著DE所在直線翻折,點B落在點P處,PD、PE分別交邊AC于點M、N,如果AD=2,PD⊥AB,垂足為點D,那么MN的長是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,水壩的橫斷面是梯形,背水坡AB的坡角∠BAD=60°,坡長AB=20 m,為加強水壩強度,將壩底從A處向后水平延伸到F處,使新的背水坡的坡角∠F=45°,求AF的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某購物網站上一種小禮品按銷售量分三部分制定階梯銷售單價,如下表:
銷售量 | 單價 |
不超過120件的部分 | 3.5元/件 |
超過120件不超過300件的部分 | 3.2元/件 |
超過300件的部分 | 3.0元/件 |
(1)“雙十一”期間,購物總金額累計滿300元可使用50元購物津貼(即累計總金額每滿300減50元),若購買85件,花費 元;若購買120件,花費 元;若購買250件,花費 元.
(2)“雙十一”期間,王老師購買這種小禮品花了335元,列方程求王老師購買了這種小禮品多少件?
(3)“雙十二”即將來臨,但“雙十二”期間不能使用購物津貼,王老師和李老師各自單獨購買這種小禮品共400件,其中王老師的購買數量大于李老師的購買數量,她們一共花費1336元,請問王老師和李老師各購買這種小禮品多少件?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com