【題目】在下列四個圖案中,既是軸對稱圖形,又是中心對稱圖形是( )
A.
B.
C.
D.
【答案】A
【解析】解:A、此圖形沿一條直線對折后能夠完全重合,∴此圖形是軸對稱圖形,也是中心對稱圖形,故此選項正確; B、此圖形沿一條直線對折后不能夠完全重合,∴此圖形不是軸對稱圖形,是中心對稱圖形,故此選項錯誤.
C、此圖形沿一條直線對折后能夠完全重合,∴此圖形是軸對稱圖形,旋轉(zhuǎn)180°不能與原圖形重合,不是中心對稱圖形,故此選項錯誤;
D、此圖形沿一條直線對折后不能夠完全重合,∴此圖形不是軸對稱圖形,是中心對稱圖形,故此選項錯誤.
故選:A.
根據(jù)軸對稱圖形的定義沿一條直線對折后,直線兩旁部分完全重合的圖形是軸對稱圖形,以及中心對稱圖形的定義分別判斷即可得出答案.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A(1, )在反比例函數(shù)y= (x>0)的圖象上,連接OA,將線段OA繞點O沿順時針方向旋轉(zhuǎn)30°,得到線段OB.
(1)求反比例函數(shù)的解析式;
(2)填空:
①點B的坐標是;
②判斷點B是否在反比例函數(shù)的圖象上?答;
③設直線AB的解析式為y=ax+b,則不等式ax+b﹣ <0的解集是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的圖象經(jīng)過點A(﹣2,0),點B(4,0),點D(2,4),與y軸交于點C,作直線BC,連接AC,CD.
(1)求拋物線的函數(shù)表達式;
(2)E是拋物線上的點,求滿足∠ECD=∠ACO的點E的坐標;
(3)點M在y軸上且位于點C上方,點N在直線BC上,點P為第一象限內(nèi)拋物線上一點,若以點C,M,N,P為頂點的四邊形是菱形,求菱形的邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與y軸正半軸相交,其頂點坐標為( ,1),下列結論:①ac<0;②a+b=0;③4ac﹣b2=4a;④a+b+c<0.其中正確結論的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠ABC=∠ADC=90°,BD⊥AC,垂足為P.
(1)請作出Rt△ABC的外接圓⊙O;(保留作圖痕跡,不寫作法)
(2)點D在⊙O上嗎?說明理由;
(3)試說明:AC平分∠BAD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正△ABC的邊長為2,以BC邊上的高AB1為邊作正△AB1C1 , △ABC與△AB1C1公共部分的面積記為S1;再以正△AB1C1邊B1C1上的高AB2為邊作正△AB2C2 , △AB1C1與△AB2C2公共部分的面積記為S2;…,以此類推,那么S3= , 則Sn= . (用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知雙曲線y= (x>0),直線l1:y﹣ =k(x﹣ )(k<0)過定點F且與雙曲線交于A,B兩點,設A(x1 , y1),B(x2 , y2)(x1<x2),直線l2:y=﹣x+ .
(1)若k=﹣1,求△OAB的面積S;
(2)若AB= ,求k的值;
(3)設N(0,2 ),P在雙曲線上,M在直線l2上且PM∥x軸,問在第二象限內(nèi)是否存在一點Q,使得四邊形QMPN是周長最小的平行四邊形?若存在,請求出Q點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB∥CD,AB≠CD,BD=AC.
(1)求證:AD=BC;
(2)若E、F、G、H分別是AB、CD、AC、BD的中點,求證:線段EF與線段GH互相垂直平分.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com