【題目】小紅爸爸上星期五買進(jìn)某公司股票1000股,每股28元,下表為本周內(nèi)每日該股票的漲跌情況。(單位:元)

星期

每股漲跌

+4

+4.5

-1

-2.5

-6

1)通過(guò)上表你認(rèn)為星期三收盤時(shí),每股是多少?

2)本周內(nèi)每股最高是多少?最低是多少元?

3)已知小紅爸爸買進(jìn)股票時(shí)付了的手續(xù)費(fèi),賣出時(shí)還需付成交額,的手續(xù)費(fèi)和的交易稅,如果小紅爸爸在星期五收盤時(shí)將全部股票賣出,你對(duì)他的收益情況怎樣評(píng)價(jià)?

【答案】1)35.5元;(2)本周內(nèi)最高價(jià)是每股36.5元,最低價(jià)是每股27元;(3)虧了1109.5元.

【解析】

1)由表格可以算出每天每股的價(jià)格;

2)由(1)的計(jì)算直接得到答案;

3)收益=星期五收盤的純收入﹣買進(jìn)時(shí)的總支出,代入求值即可.

1)星期一股價(jià):28+4=32(元),星期二股價(jià):32+4.5=36.5(元),星期三股價(jià):36.5-1=35.5(元),星期四股價(jià):35.5-2.5=33(元),星期五股價(jià):33-6=27(元).

答:星期三收盤時(shí),每股是35.5元.

2)由(1)可知:本周內(nèi)最高價(jià)是每股36.5元,最低價(jià)是每股27元.

3)買入時(shí),28×1000×(1+1.5‰)=28042元,賣出時(shí)每股:27元,所以賣出時(shí)的總錢數(shù)為27×1000×(11.5‰﹣1‰)=26932.5元,所以小紅爸爸的收益為26932.528042=-1109.5元,故虧了1109.5元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,已知ABCD,M、N、P分別是ADBCBD的中點(diǎn)∠ABD20°,∠BDC70°,則∠NMP的度數(shù)為( 。

A. 50° B. 25° C. 15° D. 20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ACBC2,∠A=∠B30°,點(diǎn)D在線段AB上運(yùn)動(dòng)(點(diǎn)D不與AB重合),連接CD,作∠CDE30°,DEBC于點(diǎn)E

(1)AB;

(2)當(dāng)AD等于多少時(shí),△ADC≌△BED,請(qǐng)說(shuō)明理由;

(3)在點(diǎn)D的運(yùn)動(dòng)過(guò)程中,△CDE的形狀可以是等腰三角形嗎?若可以,求出AD的長(zhǎng);若不可以,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有依次排列的3個(gè)數(shù):39,8,對(duì)任相鄰的兩個(gè)數(shù),都用右邊的數(shù)減去左邊的數(shù),所得之差寫(xiě)在這兩個(gè)數(shù)之間,可產(chǎn)生一個(gè)新數(shù)串:3,6,9,,8,這稱為第一次操作;做第二次同樣的操作后也可產(chǎn)生一個(gè)新數(shù)串:33,6,3,9,9,8,繼續(xù)依次操作下去,問(wèn):從數(shù)串3,9,8開(kāi)始操作第一百次以后所產(chǎn)生的那個(gè)新數(shù)串的所有數(shù)之和是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校欲招聘一名新教師,對(duì)甲、乙、丙三名應(yīng)試者進(jìn)行了面試、筆試和才藝三個(gè)方面的量化考核,他們的各項(xiàng)得分(百分制)如下表所示:

應(yīng)試者

面試成績(jī)

筆試成績(jī)

才藝

83

79

90

85

80

75

80

90

73

1)根據(jù)三項(xiàng)得分的平均分,從高到低確定應(yīng)聘者的排名順序;

2)學(xué)校規(guī)定:筆試、面試、才藝得分分別不得低于80分、80分、70分,并按照60%、30%、10%的比例計(jì)入個(gè)人總分,請(qǐng)你說(shuō)明誰(shuí)會(huì)被錄用?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,E,F(xiàn)分別是AB,CD的中點(diǎn),AFDE相交于點(diǎn)G,BFCE相交于點(diǎn)H.

(1)求證:四邊形EHFG是平行四邊形;

(2)①若四邊形EHFG是菱形,則平行四邊形ABCD必須滿足條件   

②若四邊形EHFG是矩形,則平行四邊形ABCD必須滿足條件   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1□OABC的邊OCy軸的正半軸上,OC3,A(21),反比例函數(shù)y (x0)的圖象經(jīng)過(guò)點(diǎn)B

1)求點(diǎn)B的坐標(biāo)和反比例函數(shù)的關(guān)系式;

2)如圖2,將線段OA延長(zhǎng)交y (x0)的圖象于點(diǎn)D,過(guò)BD的直線分別交x軸、y軸于E,F兩點(diǎn),①求直線BD的解析式;②求線段ED的長(zhǎng)度

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在平面直角坐標(biāo)系中,已知點(diǎn)A(0,2),△AOB為等邊三角形,Px軸負(fù)半軸上一個(gè)動(dòng)點(diǎn)(不與原點(diǎn)O重合),以線段AP為一邊在其右側(cè)作等邊三角形△APQ

(1)求點(diǎn)B的坐標(biāo);

(2)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,∠ABQ的大小是否發(fā)生改變?如不改變,求出其大。喝绺淖儯(qǐng)說(shuō)明理由;

(3)連接OQ,當(dāng)OQAB時(shí),求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】求知中學(xué)有一塊四邊形的空地ABCD,如下圖所示,學(xué)校計(jì)劃在空地上種植草皮,經(jīng)測(cè)量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要250元,問(wèn)學(xué)校需要投入多少資金買草皮?

查看答案和解析>>

同步練習(xí)冊(cè)答案