【題目】如圖,在四邊形ABCD中,已知AB=CD,M、N、P分別是AD、BC、BD的中點(diǎn)∠ABD=20°,∠BDC=70°,則∠NMP的度數(shù)為( )
A. 50° B. 25° C. 15° D. 20
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(1)如圖1,在正方形ABCD中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長線上一點(diǎn),N是∠DCP的平分線上一點(diǎn).若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE.
(下面請你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點(diǎn),則當(dāng)∠AMN=60°時,結(jié)論AM=MN是否還成立?請說明理由.
(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD……X”,請你作出猜想:當(dāng)∠AMN= °時,結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)在BD上,BE=DF,
(1)求證:AE=CF;
(2)若AB=3,∠AOD=120°,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,在直角梯形ABCD中,∠BAD=90°,E是直線AB上一點(diǎn),過E作直線l∥BC,交直線CD于點(diǎn)F.將直線l向右平移,設(shè)平移距離BE為t(t≥0),直角梯形ABCD被直線l掃過的面積(圖中陰影部分)為S,S關(guān)于t的函數(shù)圖象如圖②所示,OM為線段,MN為拋物線的一部分,NQ為射線,N點(diǎn)橫坐標(biāo)為4.
信息讀取
(1)梯形上底的長AB= ;
(2)直角梯形ABCD的面積= ;
圖象理解
(3)寫出圖②中射線NQ表示的實(shí)際意義;
(4)當(dāng)2<t<4時,求S關(guān)于t的函數(shù)關(guān)系式;
問題解決
(5)當(dāng)t為何值時,直線l將直角梯形ABCD分成的兩部分面積之比為1:3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售國外、國內(nèi)兩種品牌的智能手機(jī),這兩種手機(jī)的進(jìn)價和售價如表所示
國外品牌 | 國內(nèi)品牌 | |
進(jìn)價(萬元/部) | 0.44 | 0.2 |
售價(萬元/部) | 0.5 | 0.25 |
該商場計劃購進(jìn)兩種手機(jī)若干部,共需14.8萬元,預(yù)計全部銷售后可獲毛利潤共2.7萬元.[毛利潤=(售價﹣進(jìn)價)×銷售量]
(1)該商場計劃購進(jìn)國外品牌、國內(nèi)品牌兩種手機(jī)各多少部?
(2)通過市場調(diào)研,該商場決定在原計劃的基礎(chǔ)上,減少國外品牌手機(jī)的購進(jìn)數(shù)量,增加國內(nèi)品牌手機(jī)的購進(jìn)數(shù)量.已知國內(nèi)品牌手機(jī)增加的數(shù)量是國外品牌手機(jī)減少的數(shù)量的3倍,而且用于購進(jìn)這兩種手機(jī)的總資金不超過15.6萬元,該商場應(yīng)該怎樣進(jìn)貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于一個函數(shù),如果它的自變量 x 與函數(shù)值 y 滿足:當(dāng)1≤x≤1 時,1≤y≤1,則稱這個函數(shù)為“閉 函數(shù)”.例如:y=x,y=x 均是“閉函數(shù)”. 已知 y ax2 bx c(a0) 是“閉函數(shù)”,且拋物線經(jīng)過點(diǎn) A(1,1)和點(diǎn) B(1,1),則 a 的取值范圍是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形 ABCD 的邊長為 4,E 是 BC 的中點(diǎn),點(diǎn) P 在射線 AD 上,過點(diǎn) P 作 PF⊥AE,垂足為 F.
(1)求證:△PFA∽△ABE;
(2)當(dāng)點(diǎn) P 在射線 AD 上運(yùn)動時,設(shè) PA=x,是否存在實(shí)數(shù) x,使以 P,F(xiàn),E 為頂點(diǎn)的三角形也與△ABE
相似?若存在,求出 x 的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題12分)如圖1,已知在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,點(diǎn)E從點(diǎn)A出發(fā)沿AB以每秒1cm的速度向點(diǎn)B運(yùn)動,同時點(diǎn)D從點(diǎn)C出發(fā)沿CA以每秒2cm的速度向點(diǎn)A運(yùn)動,運(yùn)動時間為t秒(0<t<6),過點(diǎn)D作DF⊥BC于點(diǎn)F.
(1)試用含t的式子表示AE、AD的長;
(2)如圖2,在D、E運(yùn)動的過程中,四邊形AEFD是平行四邊形,請說明理由;
(3)連接DE,當(dāng)t為何值時,△DEF為直角三角形?
(4)如圖3,連接DE,將△ADE沿DE翻折得到△A′DE,試問當(dāng)t為何值時,四邊形AEA′D為菱形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小紅爸爸上星期五買進(jìn)某公司股票1000股,每股28元,下表為本周內(nèi)每日該股票的漲跌情況。(單位:元)
星期 | 一 | 二 | 三 | 四 | 五 |
每股漲跌 | +4 | +4.5 | -1 | -2.5 | -6 |
(1)通過上表你認(rèn)為星期三收盤時,每股是多少?
(2)本周內(nèi)每股最高是多少?最低是多少元?
(3)已知小紅爸爸買進(jìn)股票時付了的手續(xù)費(fèi),賣出時還需付成交額,的手續(xù)費(fèi)和的交易稅,如果小紅爸爸在星期五收盤時將全部股票賣出,你對他的收益情況怎樣評價?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com