【題目】一項(xiàng)答題競(jìng)猜活動(dòng),在6個(gè)式樣、大小都相同的箱子中有且只有一個(gè)箱子里藏有禮物.參與選手將回答5道題目,每答對(duì)一道題,主持人就從6個(gè)箱子中去掉一個(gè)空箱子.而選手一旦答錯(cuò),即取消后面的答題資格,從剩下的箱子中選取一個(gè)箱子.

1)一個(gè)選手答對(duì)了4道題,求他選中藏有禮物的箱子的概率;

2)已知一個(gè)選手選中藏有禮物的箱子的概率為,則他答對(duì)了幾道題?

【答案】1;(21道題.

【解析】

1)求得剩下的箱子數(shù),用概率公式求得概率即可;

2)根據(jù)概率求得箱子的總數(shù),然后求得答對(duì)的題目即可.

1)∵共6個(gè)箱子,答對(duì)了4道取走4個(gè)箱子,

∴還剩2個(gè)箱子,

∴一個(gè)選手答對(duì)了4道題,求他選中藏有禮物的箱子的概率

2)∵一個(gè)選手選中藏有禮物的箱子的概率為,

∴他從5個(gè)箱子中選擇一個(gè)箱子,

∴則他答對(duì)了1道題;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象分別為直線(xiàn),,過(guò)點(diǎn)(1,0)作軸的垂線(xiàn)交于點(diǎn),過(guò)點(diǎn)作軸的垂線(xiàn)交于點(diǎn),過(guò)點(diǎn)軸的垂線(xiàn)交于點(diǎn),過(guò)點(diǎn)軸的垂線(xiàn)交于點(diǎn),…依次進(jìn)行下去,則點(diǎn)的坐標(biāo)為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)經(jīng)過(guò)點(diǎn)A(﹣20),點(diǎn)B04.

1)求這條拋物線(xiàn)的表達(dá)式;

2P是拋物線(xiàn)對(duì)稱(chēng)軸上的點(diǎn),聯(lián)結(jié)AB、PB,如果∠PBO=BAO,求點(diǎn)P的坐標(biāo);

3)將拋物線(xiàn)沿y軸向下平移m個(gè)單位,所得新拋物線(xiàn)與y軸交于點(diǎn)D,過(guò)點(diǎn)DDEx軸交新拋物線(xiàn)于點(diǎn)E,射線(xiàn)EO交新拋物線(xiàn)于點(diǎn)F,如果EO=2OF,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=-x2+2x+m+1x軸于點(diǎn)A(a,0)和B(b,0),交y軸于點(diǎn)C,拋物線(xiàn)的頂點(diǎn)為D,下列四個(gè)判斷:①當(dāng)x>0時(shí),y>0;②若a=-1,則b=3;③拋物線(xiàn)上有兩點(diǎn)P(x1,y1)和Qx2,y2),若x1<1<x2,且x1+x2>2,則y1>y2;④點(diǎn)C關(guān)于拋物線(xiàn)對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)為E,點(diǎn)GF分別在x軸和y軸上,當(dāng)m=2時(shí),四邊形EDGF周長(zhǎng)的最小值為,其中,判斷正確的序號(hào)是(

A.①②B.②③C.①③D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AC=3,BC=4,以邊BC為直徑作⊙O,交ABD,DE是⊙O的切線(xiàn),過(guò)點(diǎn)BDE的垂線(xiàn),垂足為E

(1)求證ABCABE

(2)求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在OABCC20),ACOC,反比例函數(shù)y=k0)在第一象限內(nèi)的圖象過(guò)點(diǎn)A,且與BC交于點(diǎn)D,點(diǎn)D的橫坐標(biāo)為3,連接AD,△ABD的面積為,則k的值為(

A.4B.5C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)x軸交于點(diǎn)A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左邊),與y軸交于點(diǎn)C

1)求A,B兩點(diǎn)的坐標(biāo).

2)點(diǎn)P是線(xiàn)段BC下方的拋物線(xiàn)上的動(dòng)點(diǎn),連結(jié)PC,PB

①是否存在一點(diǎn)P,使△PBC的面積最大,若存在,請(qǐng)求出△PBC的最大面積;若不存在,試說(shuō)明理由.

②連結(jié)ACAP,APBC于點(diǎn)F,當(dāng)∠CAP=∠ABC時(shí),求直線(xiàn)AP的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別為BC、CD的中點(diǎn),連接AEBF交于點(diǎn)G,將△BCF沿BF對(duì)折,得到△BPF,延長(zhǎng)FPBA的延長(zhǎng)線(xiàn)于點(diǎn)Q,則下列結(jié)論:

AE=BF;S四邊形ECFG=SABG;BFQ是等腰三角形;

其中一定正確的個(gè)數(shù)是(  )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從三角形(不是等腰三角形)一個(gè)頂點(diǎn)引出一條射線(xiàn)于對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線(xiàn)段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線(xiàn)段叫做這個(gè)三角形的完美分割線(xiàn).

1)如圖1,在ABC中,CD為角平分線(xiàn),∠A=40°,B=60°,求證:CDABC的完美分割線(xiàn).

2)在ABC中,∠A=48°,CDABC的完美分割線(xiàn),且ACD為等腰三角形,求∠ACB的度數(shù).

3)如圖2,ABC中,AC=2,BC=,CDABC的完美分割線(xiàn),且ACD是以CD為底邊的等腰三角形,求完美分割線(xiàn)CD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案