【題目】如圖,由正方形ABCD的頂點(diǎn)A引一直線分別交BD、CD及BC的延長線于E、F、G,連接EC.
求證:CE是△CGF的外接圓⊙O的切線.
【答案】 詳見解析.
【解析】試題分析:通過全等三角形的判定定理SAS判定△ABE≌△CBE,然后根據(jù)全等三角形的對(duì)應(yīng)角相等知∠BAE=∠BCE,由∠BAE+∠G=90°,得出∠BCE+∠OCG=90°,從而∠ECO=90°,進(jìn)而就可求得EC是△CGF的外接圓⊙O的切線..
證明:如圖,連接OC,則OG=OC,
∴∠G=∠OCG.
∵四邊形ABCD是正方形,
∴AB=CB,∠ABE=∠CBE=45°.
又∵BE=BE,
∴△ABE≌△CBE(SAS),
∴∠BAE=∠BCE.
∵∠BAE+∠G=90°,
∴∠BCE+∠OCG=90°,
∴∠ECO=90°,
∴EC是△CGF的外接圓⊙O的切線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB是直徑,點(diǎn)D是⊙O上一點(diǎn),點(diǎn)C是的中點(diǎn),CE⊥AB于點(diǎn)E,過點(diǎn)D的切線交EC的延長線于點(diǎn)G,連接AD,分別交CE,CB于點(diǎn)P,Q,連接AC,關(guān)于下列結(jié)論:①∠BAD=∠ABC;②GP=GD;③點(diǎn)P是△ACQ的外心,其中結(jié)論正確的是________(只需填寫序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠ABC=90°,AB=CB=2,點(diǎn)D為AC的中點(diǎn),點(diǎn)E,F分別是線段AB,CB上的動(dòng)點(diǎn),且∠EDF=90°,若ED的長為m,則△BEF的周長是______(用含m的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】坐火車從上海到婁底,高鐵G1329次列車比快車K575次列車少需要9小時(shí),已知上海到婁底的鐵路長約1260千米,G1329的平均速度是K575的2.5倍.
(1)求K575的平均速度;
(2)高鐵G1329從上海到婁底只需幾小時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國倡導(dǎo)的“一帶一路”建設(shè)將促進(jìn)我國與世界各國的互利合作.根據(jù)規(guī)劃,“一帶一路”地區(qū)覆蓋總?cè)丝诩s為4400000000人,這個(gè)數(shù)用科學(xué)記數(shù)法表示為 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,邊長為6的正方形OABC的頂點(diǎn)A,C分別在x軸和y軸的正半軸上,直線y=mx+2與OC,BC兩邊分別相交于點(diǎn)D,G,以DG為邊作菱形DEFG,頂點(diǎn)E在OA邊上.
(1)如圖1,頂點(diǎn)F在邊AB上,當(dāng)CG=OD時(shí),
求m的值;
菱形DEFG是正方形嗎?如果是請(qǐng)給予證明.
(2)如圖2,連接BF,設(shè)CG=a,△FBG的面積為S,求S與a的函數(shù)關(guān)系式;
(3)如圖3,連接GE,當(dāng)GD平分∠CGE時(shí),請(qǐng)直接寫出m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com