【題目】如圖,直角坐標(biāo)系中,△ABC的頂點都在網(wǎng)格點上,其中,C點坐標(biāo)為(1,2)
(1)寫出點A、B的坐標(biāo):
A( , )、B( , )
(2)判斷△ABC的形狀 .計算△ABC的面積是 .
(3)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到△A′B′C′,A′B′C′的三個頂點坐標(biāo)分別是A′( , ),B′( , ),C′( , )
【答案】(1)A(2,﹣1),B(4,3);(2)5;(3)0;0;2;4;﹣1;3.
【解析】
(1)根據(jù)直角坐標(biāo)系的特點寫出對應(yīng)點的坐標(biāo);
(2)用△ABC所在的矩形面積減去三個小三角形的面積即可求解;
(3)分別將點A、B、C先向左平移2個單位長度,再向上平移1個單位長度,得到點A′、
B′、C′,然后順次連接并寫出坐標(biāo).
解:(1)A(2,﹣1),B(4,3);
(2)
∴AC=BC,AC2+BC2=AB2,
即△ABC的形狀是等腰直角三角形,
故△ABC的面積為5;
(3)所作圖形如圖所示:
A′(0,0)、B′(2,4)、C′(﹣1,3).
故答案為:(1)2,﹣1,4,3.(2)等腰直角三角形;5;(3)0;0;2;4;﹣1;3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,河的兩岸l1與l2相互平行,A、B是l1上的兩點,C、D是l2上的兩點,某人在點A處測得∠CAB=90°,∠DAB=30°,再沿AB方向前進(jìn)20米到達(dá)點E(點E在線段AB上),測得∠DEB=60°,求C、D兩點間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC 中,∠ACB=90°,∠A=30°,BC=2.將△ABC繞點C按順時針方向旋轉(zhuǎn)n度后得到△EDC,此時點D在AB邊上,斜邊DE交AC邊于點F,則n的大小和圖中陰影部分的面積分別為( )
A.30,2
B.60,2
C.60,
D.60,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,銳角△ABC的兩條高BD、CE相交于點O,且OB=OC.
(1)求證:△ABC是等腰三角形;
(2)判斷點O是否在∠BAC的角平分線上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接建黨90周年,某校組織了以“黨在我心中”為主題的電子小報制作比賽,評分結(jié)果只有60,70,80,90,100五種.現(xiàn)從中隨機(jī)抽取部分作品,對其份數(shù)及成績進(jìn)行整理,制成如下兩幅不完整的統(tǒng)計圖.
根據(jù)以上信息,解答下列問題:
(1)求本次抽取了多少份作品,并補全兩幅統(tǒng)計圖;
(2)已知該校收到參賽作品共900份,請估計該校學(xué)生比賽成績達(dá)到90分以上(含90分)的作品有多少份?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)了《展開與折疊》這一課后,明白了很多幾何體都能展開成平面圖形.于是他在家用剪刀展開了一個長方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學(xué)的知識,回答下列問題:
(1)小明總共剪開了_______條棱.
(2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經(jīng)過折疊以后,仍然可以還原成一個長方體紙盒,你認(rèn)為他應(yīng)該將剪斷的紙條粘貼到①中的什么位置?請你幫助小明在①上補全.
(3)小明說:他所剪的所有棱中,最長的一條棱是最短的一條棱的5倍.現(xiàn)在已知這個長方體紙盒的底面是一個正方形,并且這個長方體紙盒所有棱長的和是880cm,求這個長方體紙盒的體積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個邊長為16m的正方形展廳,準(zhǔn)備用邊長分別為1m和0.5m的兩種正方形地板磚鋪設(shè)其地面.要求正中心一塊是邊長為1m的大地板磚,然后從內(nèi)到外一圈小地板磚、一圈大地板磚相間鑲嵌(如圖所示),則鋪好整個展廳地面共需要邊長為1m的大地板磚塊.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】巳知二次函數(shù)y=a(x2﹣6x+8)(a>0)的圖象與x軸分別交于點A、B,與y軸交于點C.點D是拋物線的頂點.
(1)如圖①.連接AC,將△OAC沿直線AC翻折,若點O的對應(yīng)點0'恰好落在該拋物線的 對稱軸上,求實數(shù)a的值;
(2)如圖②,在正方形EFGH中,點E、F的坐標(biāo)分別是(4,4)、(4,3),邊HG位于邊EF的 右側(cè).小林同學(xué)經(jīng)過探索后發(fā)現(xiàn)了一個正確的命題:“若點P是邊EH或邊HG上的任意一點,則四條線段PA、PB、PC、PD不能與任何一個平行四邊形的四條邊對應(yīng)相等 (即這四條線段不能構(gòu)成平行四邊形).“若點P是邊EF或邊FG上的任意一點,剛才的結(jié)論是否也成立?請你積極探索,并寫出探索過程;
(3)如圖②,當(dāng)點P在拋物線對稱軸上時,設(shè)點P的縱坐標(biāo)t是大于3的常數(shù),試問:是否存在一個正數(shù)a,使得四條線段PA、PB、PC、PD與一個平行四邊形的四條邊對應(yīng)相等 (即這四條線段能構(gòu)成平行四邊形)?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com