精英家教網(wǎng)如圖,在一個(gè)成直角三角形的水池邊,離A點(diǎn)10米的B處有甲、乙兩個(gè)人,甲沿B→A→C的方向,乙沿B→D→C的方向,以相同的速度走到C點(diǎn),結(jié)果同時(shí)到達(dá),己知AC的長(zhǎng)為20米,則這個(gè)水池的最長(zhǎng)邊是( 。┟祝
A、25B、30C、15D、5
分析:由勾股定理,及甲乙二人以相同速度到達(dá)同時(shí)同一目的地,可找到兩個(gè)等量關(guān)系式.聯(lián)立解方程即可.
解答:解:由勾股定理知,CD2=AD2+AC2①.
又∵甲、乙兩個(gè)人,甲沿B→A→C的方向,乙沿B→D→C的方向,以相同的速度走到C點(diǎn),結(jié)果同時(shí)到達(dá).
可知二人所走路程相等.∴BA+AC=BD+DC②
將AB,AC的值代入,并聯(lián)立①②得
CD2(BD+10)2202   
30=BD+CD
,解之得
CD=25
BD=5
;
CD即為所求最長(zhǎng)邊,其長(zhǎng)度為25米,
故選A.
點(diǎn)評(píng):本題是綜合考查勾股定理與一元二次方程解法的應(yīng)用題,解題關(guān)鍵在于找到等量關(guān)系式,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖,可用一個(gè)正方形制作成一副“七巧板”,利用“七巧板”能拼出各種各樣的圖案,根據(jù)“七巧板”的制作過(guò)程,請(qǐng)你解答下列問(wèn)題.
(1)“七巧板”的七個(gè)圖形,可以歸納為三種不同形狀的平面圖形,即一塊正方形,一塊
平行四邊形
和五塊
等腰直角三角形

(2)請(qǐng)按要求將七巧板的七塊圖形重新拼接(不重疊,并且圖形中間不留縫隙),在下面空白處畫(huà)出示意圖.
①拼成一個(gè)等腰直角三角形;
②拼成一個(gè)長(zhǎng)與寬不等的長(zhǎng)方形;
③拼成一個(gè)六邊形.
(3)發(fā)揮你的想象力,用七巧板拼成一個(gè)圖案,在下面空白處畫(huà)出示意圖,并在圖案旁邊寫(xiě)出簡(jiǎn)明的解說(shuō)詞.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•蓮都區(qū)模擬)如圖,在平面直角坐標(biāo)系xOy中,△ABC的A、B兩個(gè)頂點(diǎn)在x軸上,頂點(diǎn)C在y軸的負(fù)半軸上.已知OA:OB=1:5,OB=OC,△ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)A、B、C三點(diǎn).
(1)求此拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)P(2,-3)是拋物線對(duì)稱軸上的一點(diǎn),在線段OC上有一動(dòng)點(diǎn)M,以每秒2個(gè)單位的速度從O向C運(yùn)動(dòng),(不與點(diǎn)O,C重合),過(guò)點(diǎn)M作MH∥BC,交X軸于點(diǎn)H,設(shè)點(diǎn)M的運(yùn)動(dòng)時(shí)間為t秒,試把△PMH的面積S表示成t的函數(shù),當(dāng)t為何值時(shí),S有最大值,并求出最大值;
(3)設(shè)點(diǎn)E是拋物線上異于點(diǎn)A,B的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的平行線交拋物線于另一點(diǎn)F.以EF為直徑畫(huà)⊙Q,則在點(diǎn)E的運(yùn)動(dòng)過(guò)程中,是否存在與x軸相切的⊙Q?若存在,求出此時(shí)點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角平面坐標(biāo)中,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-5,4),B(-6,2),C(-1,2).
(1)現(xiàn)把△ABC繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)180°得到△A1B1C1,直接寫(xiě)出點(diǎn)A1、B1、C1的坐標(biāo);
(2)若將△ABC平移后,與△A1B1C1恰好拼成一個(gè)平行四邊形,寫(xiě)出滿足要求的一種平移方法;
(3)請(qǐng)直接寫(xiě)出(2)中平行四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料:一個(gè)直角三角形紙片ABC,分別取AB、AC邊的中點(diǎn)M、N,連接MN,作∠AHM=∠AHN=90°,將三角形紙片沿AH、MN剪開(kāi)分割成三塊,如圖1所示;如圖2,將三角形紙片①繞AB的中點(diǎn)M旋轉(zhuǎn)至三角形紙片④處,將三角形紙片②繞AC的中點(diǎn)N旋轉(zhuǎn)至三角形紙片⑤處,依此方法操作,可以把直角三角形紙片ABC拼接成一個(gè)與它面積相等的長(zhǎng)方形紙片DBCE.
解決下列問(wèn)題:

(1)如圖3,一個(gè)任意三角形紙片ABC,將其分割后拼接成一個(gè)與三角形ABC的面積相等的長(zhǎng)方形,在圖3中畫(huà)出分割的實(shí)線和拼接的虛線;
(2)如圖4,一個(gè)任意四邊形紙片ABCD,將其分割后拼接成一個(gè)與四邊形ABCD的面積相等的長(zhǎng)方形,在圖4畫(huà)出分割的實(shí)線和拼接的虛線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,AB、BC、AC三邊的長(zhǎng)分別為
5
10
、
13
,求這個(gè)三角形的面積.小華同學(xué)在解答這道題時(shí),先畫(huà)一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫(huà)出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.這種方法叫做構(gòu)圖法.
(1)△ABC的面積為:
3.5
3.5

(2)若△DEF三邊的長(zhǎng)分別為
5
8
、
17
,請(qǐng)?jiān)趫D2的正方形網(wǎng)格中畫(huà)出相應(yīng)的△DEF,并利用構(gòu)圖法求出它的面積為
3
3

(3)如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過(guò)點(diǎn)E、F作射線GA的垂線,垂足分別為P、Q.試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(4)如圖4,一個(gè)六邊形的花壇被分割成7個(gè)部分,其中正方形PRBA,RQDC,QPFE的面積分別為13m2、25m2、36m2,則六邊形花壇ABCDEF的面積是
110
110
m2

查看答案和解析>>

同步練習(xí)冊(cè)答案