【題目】如圖,點B在線段AC上,點E在線段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M、N分別是AE、CD的中點,判斷BM與BN的關系,并說明理由.

【答案】解:BM=BN,BM⊥BN,
理由是:在△ABE和△DBC中,
,
∴△ABE≌△DBC(SAS),
∴AE=DC,∠EAB=∠BDC,∠AEB=∠DCB,
∵∠ABD=∠DBC,∠ABD+∠DBC=180°,
∴∠ABD=∠DBC=90°,
∵M為AE的中點,N為CD的中點,
∴BM=AM=EM= AE,BN=CN=DN= CD,
∴BM=BN,∠EAB=∠MBA,∠CDB=∠DBN,∠AEB=∠EBM,∠NCB=∠NBC,
∵∠EAB=∠BDC,∠AEB=∠DCB,
∴∠ABM=∠DBN,∠EBM=∠NBC,
∴∠ABC=2∠DBN+2∠EBM=180°,
∴∠EBN+∠EBM=90°,
∴BM⊥BN.
【解析】根據(jù)SAS推出△ABE≌△DBC,推出AE=DC,∠EAB=∠BDC,∠AEB=∠DCB,求出∠ABD=∠DBC=90°,BM=AM=EM= AE,BN=CN=DN= CD,推出∠ABM=∠DBN,∠EBM=∠NBC即可.
【考點精析】本題主要考查了直角三角形斜邊上的中線的相關知識點,需要掌握直角三角形斜邊上的中線等于斜邊的一半才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=CB,∠ABC=90°,E為CB延長線上一點,點F在AB上,且AE=CF.

(1)求證:Rt△ABE≌Rt△CBF;
(2)若∠CAE=60°,求∠ACF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方程x(x+1)=x+1的解是( )

A. x1=0,x2=-1 B. x = 1 C. x1 = x2 = 1 D. x1 = 1,x2=-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩家超市以相同的價格出售同樣的商品,為了吸引顧客,各自推出不同的優(yōu)惠方案:在甲超市累計購買商品超出300元之后,超出部分按原價8折優(yōu)惠;在乙超市累計購買商品超出200元之后,超出部分按原價8.5折優(yōu)惠.設顧客預計累計購物元().

(1)請用含的代數(shù)式分別表示顧客在兩家超市購物所付的費用;

(2)李明準備購買500元的商品,你認為他應該去哪家超市?請說明理由;

(3)計算一下,李明購買多少元的商品時,到兩家超市購物所付的費用一樣?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的邊長為, 、、分別是、、、邊上的動點(不含端點),且、均過正方形的中心

(1)填空: (“>”、“<”、“=”);

(2)當四邊形為矩形時,請問線段應滿足什么數(shù)量關系;

(3)當四邊形為正方形時, 交于點,求的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知x2是一元二次方程x2+mx+20的一個解,則m的值是( 。

A.3B.3C.0D.03

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方程x2x0的常數(shù)項是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若∠α43°51′,則∠α的余角等于_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠ABC與∠ACB的平分線交于點F,過點F作DE∥BC交AB于點D,交AC于點E,那么下列結論:
①△BDF和△CEF都是等腰三角形;
②DE=BD+CE;
③△ADE的周長等于AB與AC的和;
④BF=CF.
其中正確的有(

A.①②③
B.①②③④
C.①②
D.①

查看答案和解析>>

同步練習冊答案