【題目】人們在長期的數學實踐中總結了許多解決數學問題的方法,形成了許多光輝的數學想法,其中轉化思想是中學教學中最活躍,最實用,也是最重要的數學思想,例如將不規(guī)則圖形轉化為規(guī)則圖形就是研究圖形問題比較常用的一種方法。
問題提出:求邊長分別為的三角形面積。
問題解決:在解答這個問題時,先建立一個正方形網格(每個小正方形的邊長為1),再在網格中畫出邊長分別為的格點三角形△ABC(如圖①),AB=是直角邊為1和2的直角三角形斜邊,BC=是直角邊分別為1和3的直角三角形的斜邊,AC=是直角邊分別為2和3 的直角三角形斜邊,用一個大長方形的面積減去三個直角三角形的面積,這樣不需求△ABC的高,而借用網格就能計算出它的面積。
(1)請直接寫出圖①中△ABC的面積為_______________ 。
(2)類比遷移:求邊長分別為的三角形面積(請利用圖②的正方形網格畫出相應的△ABC,并求出它的面積)。
科目:初中數學 來源: 題型:
【題目】為驗證“擲一個質地均勻的骰子,向上的點數為偶數的概率是0.5”,下列模擬實驗中,不科學的是( )
A. 袋中裝有1個紅球一個綠球,它們除顏色外都相同,計算隨機摸出紅球的概率
B. 用計算器隨機地取不大于10的正整數,計算取得奇數的概率
C. 隨機擲一枚質地均勻的硬幣,計算正面朝上的概率
D. 如圖,將一個可以自由旋轉的轉盤分成甲、乙、丙3個相同的扇形,轉動轉盤任其自由停止,計算指針指向甲的概率
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題背景:在△ABC中,AB、BC、AC三邊的長分別為、、,求這個三角形的面積小輝同學在解答這道題時,先建立一個正方形網格(每個小正方形的邊長為1),再在網格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖1所示.這樣不需求△ABC的高,而借用網格就能計算出它的面積.
(1)請你利用上述方法求出△ABC的面積.
(2)在圖2中畫△DEF,DE、EF、DF三邊的長分別為、、
①判斷三角形的形狀,說明理由.
②求這個三角形的面積.(直接寫出答案)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】探索:
(x-1)(x+1)=x2-1, (x-1)(x2+x+1)=x3-1,
(x-1)(x3+x2+x+1)=x4-1, (x-1)(x4+x3+x2+x+1)=x5-1,
……
(1)試寫出第五個等式;
(2)試求26+25+24+23+22+2+1的值;
(3)判斷22 017+22 016+22 015+…+22+2+1的值的個位數字是幾.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算:
(1)-23+ (2018+3)0-; (2)992-69×71;
(3) ÷(-3xy); (4)(-2+x)(-2-x);
(5)(a+b-c)(a-b+c); (6)(3x-2y+1)2.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是小王和小李在一次跑步比賽中的時間和路程圖.
(1)這次比賽的路程是_______米;
(2)小王的平均速度是_________米/秒;
(3)他們先到達終點的是_______;
(4)小李跑步的路程 (米)與時間 (秒)的函數關系式是_________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,點是線段所在平面內任意一點,分別以、為邊,在同側作等邊和等邊,聯(lián)結、交于點.
(1)如圖1,當點在線段上移動時,線段與的數量關系是:________;
(2)如圖2,當點在直線外,且,仍分別以、為邊,在 同側作等邊和等邊,聯(lián)結、交于點.(1)的結論是否還存在?若成立,請證明;若不成立,請說明理由.此時是否隨的大小發(fā)生變化?若變化,寫出變化規(guī)律,若不變,請求出的度數;
(3)如圖3,在(2)的條件下,聯(lián)結,求證: 平分.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊AB在數軸上,數軸上點A表示的數為﹣1,正方形ABCD的面積為16.
(1)數軸上點B表示的數為 ;
(2)將正方形ABCD沿數軸水平移動,移動后的正方形記為A′B′C′D′,移動后的正方形A′B′C′D′與原正方形ABCD重疊部分的面積為S.
①當S=4時,畫出圖形,并求出數軸上點A′表示的數;
②設正方形ABCD的移動速度為每秒2個單位長度,點E為線段AA′的中點,點F在線段BB′上,且BF=BB′.經過t秒后,點E,F所表示的數互為相反數,直接寫出t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明同學騎自行車去郊外春游,如圖表示他離家的距離y(千米)與所用的時間x(小時)之間關系的函數圖象.
(1)根據圖象回答:小明到達離家最遠的地方需 小時,
(2)小明出發(fā)兩個半小時離家 千米.
(3)小明出發(fā) 小時離家12千米.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com