如圖1,在Rt△AOB中,∠AOB=90°,AO=,∠ABO=30°.動點P在線段AB上從點A向終點B以每秒個單位的速度運動,設運動時間為t秒.在直線OB 上取兩點M、N作等邊△PMN.
(1)求當?shù)冗叀鱌MN的頂點M運動到與點O重合時t的值.
(2)求等邊△PMN的邊長(用t的代數(shù)式表示);
(3)如果取OB的中點D,以OD為邊在Rt△AOB 內(nèi)部作如圖2所示的矩形ODCE,點C在線段AB上.設等邊△PMN和矩形ODCE重疊部分的面積為S,請求出當0≤t≤2秒時S與t的函數(shù)關系式,并求出S的最大值.
(4)在(3)中,設PN與EC的交點為R,是否存在點R,使△ODR是等腰三角形?若存在,求出對應的t的值;若不存在,請說明理由.

【答案】分析:(1)利用直角三角形中30°所對的邊是斜邊的一半即可求出AP,進而求出t的值;
(2)利用△BPH∽△BAO,得出PH的長,再利用解直角三角形求出PN的長;
(3)根據(jù)當0≤t≤1時以及當t=1時和當t=2時,分別求出S的值;
(4)根據(jù)當D為頂點,OD=OR1=6時,當R2為頂點,OR2=DR2時,③當O為等腰△的頂點時,分別得出即可.
解答:解:(1)∵△PMN是等邊三角形,
∴∠P1M1N1=60°;
∵在Rt△AOB中,
∠AOB=90°,∠ABO=30°,
∴∠AP10=90°,
在Rt△AP1O中,AP1=AO=2
∴t=,即t=2;

(2)∵△BPH∽△BAO,
,
∴PH=
∵cos30°=,
∴PN===8-t,

(3)當0≤t≤1時,S1=S四邊形EONG
作GH⊥OB于H,如圖3,
∵∠GNH=60°,GH=2,
∴HN=2,∵PN=NB=8-t,
∴ON=OB-NB,
∴ON=12-(8-t)=4+t,
∴OH=4+t-2=2+t,
S1=(2+t+4+t)×2
=2t+6
∵2>0,
∴S隨t增大而增大,
當t=1時,S最大=8,
當1<t<2時,如圖4,S2=S五邊形IFONG
作GH⊥OB于H,
∵AP2=t
∴AF=2t,
∴OF=4-2t,
∴EF=2-(4-2t)
=2t-2
∴EI=2t-2,
∴S2=S梯形EONG-S△EFI
=2t+6-(2t-2)×(2t-2
=-2t2+6t+4,
∵-2<0,
∴當t=-=
S2最大=,
當t=2時,如圖5,
MP=MN=6,
N與D重合,
S3=S梯形IMNG,
=×36-×4,
=8,
∴S=,
S最大=,

(4)∵△ODR是等腰三角形,
①當D為頂點,OD=OR1=6時,
DR1=6-2>2(不合題意舍去),
當D為頂點時,R1不存在,
此時R1不存在,使△ODR是等腰三角形,
②當R2為頂點,OR2=DR2時,
R2在EC的中點處,
∵AO=4,∠B=30°,
∴BO=12,
∵D為OB中點,
∴DO=EC=6,
∴ER2=3,
∵OB=12,∠B=30°,
∴OP2=6,
∴R2P2=3,
∴ER2=P2R2=3,
∴CP2=3,
∴AP2=4-3=,
t2==1,
③當O為等腰三角形頂角的頂點時,
CR3=6-2
CP3=××2=6-6,
AP3=4-(6-6),
=6-2,
∴t3==2-2>2(不合題意舍去).
綜上所述:t=1時,△ODR是等腰三角形.
點評:此題主要考查了二次函數(shù)的綜合應用以及相似三角形的性質(zhì)等知識,(3)(4)小題中,都用到了分類討論的數(shù)學思想,難點在于考慮問題要全面,做到不重不漏.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖1,在Rt△AOB中,∠AOB=90°,AO=4
3
,∠ABO=30°.動點P在線段AB上從點A向終點B以每秒
3
個單位的速度運動,設運動時間為t秒.在直線OB 上取兩點M、N作等邊△PMN.
(1)求當?shù)冗叀鱌MN的頂點M運動到與點O重合時t的值.
(2)求等邊△PMN的邊長(用t的代數(shù)式表示);
(3)如果取OB的中點D,以OD為邊在Rt△AOB 內(nèi)部作如圖2所示的矩形ODCE,點C在線段AB上.設等邊△PMN和矩形ODCE重疊部分的面積為S,請求出當0≤t≤2秒時S與t的函數(shù)關系式,并求出S的最大值.
(4)在(3)中,設PN與EC的交點為R,是否存在點R,使△ODR是等腰三角形?若存在,求出對應的t的值;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•閘北區(qū)一模)已知:如圖1,在Rt△OAC中,AO⊥OC,點B在OC邊上,OB=6,BC=12,∠ABO+∠C=90°.動點M和N分別在線段AB和AC邊上.
(l)求證△AOB∽△COA,并求cosC的值;
(2)當AM=4時,△AMN與△ABC相似,求△AMN與△ABC的面積之比;
(3)如圖2,當MN∥BC時,將△AMN沿MN折疊,點A落在四邊形BCNM所在平面的點為點E.設MN=x,△EMN與四邊形BCNM重疊部分的面積為y,試寫出y關于x的函數(shù)關系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆重慶全善學校九年級下學期第二次月考數(shù)學試卷(帶解析) 題型:解答題

如圖1,在Rt△AOB中,∠AOB=90°,AO=,∠ABO=30°.動點P在線段AB上從點A向終點B以每秒個單位的速度運動,設運動時間為t秒.在直線OB 上取兩點M、N作等邊△PMN.
(1)求當?shù)冗叀鱌MN的頂點M運動到與點O重合時t的值.
(2)求等邊△PMN的邊長(用t的代數(shù)式表示);
(3)如果取OB的中點D,以OD為邊在Rt△AOB 內(nèi)部作如圖2所示的矩形ODCE,點C在線段AB上.設等邊△PMN和矩形ODCE重疊部分的面積為S,請求出當0≤t≤2秒時S與t的函數(shù)關系式,并求出S的最大值.
(4)在(3)中,設PN與EC的交點為R,是否存在點R,使△ODR是等腰三角形?若存在,求出對應的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年重慶全善學校九年級下學期第二次月考數(shù)學試卷(解析版) 題型:解答題

如圖1,在Rt△AOB中,∠AOB=90°,AO=,∠ABO=30°.動點P在線段AB上從點A向終點B以每秒個單位的速度運動,設運動時間為t秒.在直線OB 上取兩點M、N作等邊△PMN.

(1)求當?shù)冗叀鱌MN的頂點M運動到與點O重合時t的值.

(2)求等邊△PMN的邊長(用t的代數(shù)式表示);

(3)如果取OB的中點D,以OD為邊在Rt△AOB 內(nèi)部作如圖2所示的矩形ODCE,點C在線段AB上.設等邊△PMN和矩形ODCE重疊部分的面積為S,請求出當0≤t≤2秒時S與t的函數(shù)關系式,并求出S的最大值.

(4)在(3)中,設PN與EC的交點為R,是否存在點R,使△ODR是等腰三角形?若存在,求出對應的t的值;若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖1,在Rt△AOB中,∠AOB=90°,AO=數(shù)學公式,∠ABO=30°.動點P在線段AB上從點A向終點B以每秒數(shù)學公式個單位的速度運動,設運動時間為t秒.在直線OB 上取兩點M、N作等邊△PMN.
(1)求當?shù)冗叀鱌MN的頂點M運動到與點O重合時t的值.
(2)求等邊△PMN的邊長(用t的代數(shù)式表示);
(3)如果取OB的中點D,以OD為邊在Rt△AOB 內(nèi)部作如圖2所示的矩形ODCE,點C在線段AB上.設等邊△PMN和矩形ODCE重疊部分的面積為S,請求出當0≤t≤2秒時S與t的函數(shù)關系式,并求出S的最大值.
(4)在(3)中,設PN與EC的交點為R,是否存在點R,使△ODR是等腰三角形?若存在,求出對應的t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案