【題目】在ABCD中, ∠A的平分線分BC成4和3的兩條線段, 則ABCD的周長為_____.
【答案】20或22;
【解析】
∠A的平分線分BC成4cm和3cm的兩條線段,設(shè)∠A的平分線交BC于E點(diǎn),有兩種可能,BE=4或3,證明△ABE是等腰三角形,分別求周長.
解:設(shè)∠A的平分線交BC于E點(diǎn),
∵AD∥BC,
∴∠BEA=∠DAE,
又∠BAE=∠DAE,
∴∠BEA=∠BAE
∴AB=BE.而BC=3+4=7.
①當(dāng)BE=4時(shí),AB=BE=4,ABCD的周長=2×(AB+BC)=2×(4+7)=22;
②當(dāng)BE=3時(shí),AB=BE=3,ABCD的周長=2×(AB+BC)=2×(3+7)=20.
所以ABCD的周長為22cm或20cm.
故答案為22cm或20cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形中,延長至使,連接交于點(diǎn),點(diǎn)是線段的中點(diǎn).
(1)如圖1,若,,求平行四邊形的面積;
(2)如圖2,過點(diǎn)作交于點(diǎn),于點(diǎn),連接,若,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x>0)交于A(2,4),B(a,1),與x軸,y軸分別交于點(diǎn)C,D.
(1)直接寫出一次函數(shù)y=kx+b的表達(dá)式和反比例函數(shù)y=(x>0)的表達(dá)式;
(2)求證:AD=BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點(diǎn)、、分別在邊、、上,且,.下列說法中不正確的是( )
A.四邊形是平行四邊形
B.如果,那么四邊形是矩形.
C.如果平分,那么四邊形是正方形.
D.如果且,那么四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,點(diǎn)A在BC邊的上方,把△ABC繞點(diǎn)B逆時(shí)針方向旋轉(zhuǎn)60°得△DBE,繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)60°得△FEC,連接AD,AF.
(1)△ABD,△ACF,△BCE是什么特殊三角形?請(qǐng)說明理由;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADEF是正方形?請(qǐng)說明理由;
(3)當(dāng)△ABC滿足什么條件時(shí),以點(diǎn)A,D,E,F為頂點(diǎn)的四邊形不存在?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知:點(diǎn)A(0,0),B(,0),C(0,1)在△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個(gè)頂點(diǎn)在BC邊上,作出的等邊三角形分別是第1個(gè)△AA1B1,第2個(gè)△B1A2B2,第3個(gè)△B2A3B3,…,則第個(gè)等邊三角形的邊長等于__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】高鐵給我們的出行帶來了極大的方便.如圖,“和諧號(hào)”高鐵列車座椅后面的小桌板收起時(shí),小桌板的支架的底端N與桌面頂端M的距離MN=75cm,且可以看作與地面垂直.展開小桌板使桌面保持水平,AB⊥MN,∠MAB=∠MNB=37°,且支架長BN與桌面寬AB的長度之和等于MN的長度.求小桌板桌面的寬度AB(結(jié)果精確到1cm,參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八年級(jí)物理興趣小組20位同學(xué)在實(shí)驗(yàn)操作中的得分如表:
得分(分) | 10 | 9 | 8 | 7 |
人數(shù)(人) | 5 | 8 | 4 | 3 |
(1)求這20位同學(xué)實(shí)驗(yàn)操作得分的眾數(shù),中位數(shù);
(2)這20位同學(xué)實(shí)驗(yàn)操作得分的平均分是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 已知,反比例函數(shù)y=的圖象和一次函數(shù)的圖象交于A、B兩點(diǎn),點(diǎn)A的橫坐標(biāo)是-1,點(diǎn)B的縱坐標(biāo)是-1.
(1)求這個(gè)一次函數(shù)的表達(dá)式;
(2)若點(diǎn)P(m,n)在反比例函數(shù)圖象上,且點(diǎn)P關(guān)于x軸對(duì)稱的點(diǎn)Q恰好落在一次函數(shù)的圖象上,求m2+n2的值;
(3)若M(x1,y1),N(x2,y2)是反比例函數(shù)在第一象限圖象上的兩點(diǎn),滿足x2-x1=2,y1+y2=3,求△MON的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com