【題目】如圖,在矩形ABCD中,AB=4,BC=6,將矩形ABCD繞B逆時針旋轉(zhuǎn)30°后得到矩形GBEF,延長DA交FG于點H,則GH的長為( )
A.8﹣4B.﹣4C.3﹣4D.6﹣3
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架.它的代數(shù)成就主要包括開方術(shù)、正負術(shù)和方程術(shù).其中,方程術(shù)是《九章算術(shù)》最高的數(shù)學(xué)成就.《九章算術(shù)》“勾股”一章記載:“今有戶高多于廣六尺八寸,兩隅相去適一丈.問戶高、廣各幾何?”譯文:已知長方形門的高比寬多6尺8寸,門的對角線長1丈,那么門的高和寬各是多少?(1丈=10尺,1尺=10寸)設(shè)長方形門的寬尺,可列方程為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標系xOy中的任意兩點M,N,給出如下定義:點M與點N的“折線距離”為:.
例如:若點M(-1,1),點N(2,-2),則點M與點N的“折線距離”為:.根據(jù)以上定義,解決下列問題:
(1)已知點P(3,-2).
①若點A(-2,-1),則d(P,A)= ;
②若點B(b,2),且d(P,B)=5,則b= ;
③已知點C(m,n)是直線上的一個動點,且d(P,C)<3,求m的取值范圍.
(2)⊙F的半徑為1,圓心F的坐標為(0,t),若⊙F上存在點E,使d(E,O)=2,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】光線從空氣射入水中會發(fā)生折射現(xiàn)象,發(fā)生折射時,滿足的折射定律如圖①所示:折射率(代表入射角,代表折射角).小明為了觀察光線的折射現(xiàn)象,設(shè)計了圖②所示的實驗;通過細管可以看見水底的物塊,但從細管穿過的直鐵絲,卻碰不上物塊,圖③是實驗的示意圖,點A,C,B在同一直線上,測得,則光線從空射入水中的折射率n等于________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為全面貫徹黨的教育方針,堅持“健康第一的教育理念,促進學(xué)生健康成長,提高體質(zhì)健康水平,成都市調(diào)整體育中考實施方案:分值增加至60,男1000(女80米)必考,足球、籃球、排球“三選一”……從2019年秋季新入學(xué)的七年級起開始實施,某1學(xué)為了解七年級學(xué)生對三大球類運動的喜愛情況,從七年級學(xué)生中隨機抽取部分學(xué)生進行調(diào)查問卷,通過分析整理繪制了如下兩幅統(tǒng)計圖。請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:
(1)求參與調(diào)查的學(xué)生中,喜愛排球運動的學(xué)生人數(shù),并補全條形圖
(2)若該中學(xué)七年級共有400名學(xué)生,請你估計該中學(xué)七年級學(xué)生中喜愛籃球運動的學(xué)生有多少名?
(3)若從喜愛足球運動的2名男生和2名女生中隨機抽取2名學(xué)生,確定為該校足球運動員的重點培養(yǎng)對象,請用列表法或畫樹狀圖的方法求抽取的兩名學(xué)生為一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,過點M(0,2)的直線l與x軸平行,且直線l分別與反比例函數(shù)y=(x>0)和y=(x<0)的圖象分別交于點P,Q.
(1)求P點的坐標;
(2)若△POQ的面積為9,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有長為24m的籬笆,現(xiàn)一面利用墻(墻的最大可用長度a為10m)圍成中間隔有一道籬笆的長方形花圃,設(shè)花圃的寬AB為xm,面積為Sm2.
(1)求S與x的函數(shù)關(guān)系式及x值的取值范圍;
(2)要圍成面積為45m2的花圃,AB的長是多少米?
(3)當AB的長是多少米時,圍成的花圃的面積最大,最大面積為多少m2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形ABCD的邊AB在x軸正半軸上,點A與原點重合,點D的坐標是 (3,4),反比例函數(shù)y=(k≠0)經(jīng)過點C,則k的值為( 。
A.12B.15C.20D.32
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點P是等邊三角形△ABC中一點,線段AP繞點A逆時針旋轉(zhuǎn)60°到AQ,連接PQ、QC.
(1)求證:PB=QC;
(2)若PA=3,PB=4,∠APB=150°,求PC的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com