(2012•天津)“三等分任意角”是數(shù)學(xué)史上一個(gè)著名問題.已知一個(gè)角∠MAN,設(shè)∠α=
13
∠MAN.
(Ⅰ)當(dāng)∠MAN=69°時(shí),∠α的大小為
23
23
(度);
(Ⅱ)如圖,將∠MAN放置在每個(gè)小正方形的邊長(zhǎng)為1cm的網(wǎng)格中,角的一邊AM與水平方向的網(wǎng)格線平行,另一邊AN經(jīng)過格點(diǎn)B,且AB=2.5cm.現(xiàn)要求只能使用帶刻度的直尺,請(qǐng)你在圖中作出∠α,并簡(jiǎn)要說明做法(不要求證明)
如圖,讓直尺有刻度一邊過點(diǎn)A,設(shè)該邊與過點(diǎn)B的豎直方向的網(wǎng)格線交于點(diǎn)C,與過點(diǎn)B水平方向的網(wǎng)格線交于點(diǎn)D,保持直尺有刻度的一邊過點(diǎn)A,調(diào)整點(diǎn)C、D的位置,使CD=5cm,畫射線AD,此時(shí)∠MAD即為所求的∠α.
如圖,讓直尺有刻度一邊過點(diǎn)A,設(shè)該邊與過點(diǎn)B的豎直方向的網(wǎng)格線交于點(diǎn)C,與過點(diǎn)B水平方向的網(wǎng)格線交于點(diǎn)D,保持直尺有刻度的一邊過點(diǎn)A,調(diào)整點(diǎn)C、D的位置,使CD=5cm,畫射線AD,此時(shí)∠MAD即為所求的∠α.
分析:(Ⅰ)根據(jù)題意,用69°乘以
1
3
,計(jì)算即可得解;
(Ⅱ)利用網(wǎng)格結(jié)構(gòu),作以點(diǎn)B為直角頂點(diǎn)的直角三角形,并且使斜邊所在的直線過點(diǎn)A,且斜邊的長(zhǎng)度為5,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得斜邊上的中線等于AB的長(zhǎng)度,再結(jié)合三角形的外角性質(zhì)可知,∠BAD=2∠BDC,再根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠BDC=∠MAD,從而得到∠MAD=
1
3
∠MAN.
解答:解:(Ⅰ)
1
3
×69°=23°;

(Ⅱ)如圖,讓直尺有刻度一邊過點(diǎn)A,設(shè)該邊與過點(diǎn)B的豎直方向的網(wǎng)格線交于點(diǎn)C,與過點(diǎn)B水平方向的網(wǎng)格線交于點(diǎn)D,保持直尺有刻度的一邊過點(diǎn)A,調(diào)整點(diǎn)C、D的位置,使CD=5cm,畫射線AD,此時(shí)∠MAD即為所求的∠α.
點(diǎn)評(píng):本題考查了應(yīng)用與設(shè)計(jì)作圖,主要利用了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),使作出的直角三角形斜邊上的中線恰好把三角形分成兩個(gè)等腰三角形是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•天津)已知拋物線y=ax2+bx+c(0<2a<b)的頂點(diǎn)為P(x0,y0),點(diǎn)A(1,yA)、B(0,yB)、C(-1,yC)在該拋物線上.
(Ⅰ)當(dāng)a=1,b=4,c=10時(shí),
①求頂點(diǎn)P的坐標(biāo);
②求
yA
yB-yC
的值;
(Ⅱ)當(dāng)y0≥0恒成立時(shí),求
yA
yB-yC
的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•天津)據(jù)某域名統(tǒng)計(jì)機(jī)構(gòu)公布的數(shù)據(jù)顯示,截至2012年5月21日,我國(guó)“.NET”域名注冊(cè)量約為560000個(gè),居全球第三位,將560000用科學(xué)記數(shù)法表示應(yīng)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•天津)將正比例函數(shù)y=-6x的圖象向上平移,則平移后所得圖象對(duì)應(yīng)的函數(shù)解析式可以是
y=-6x+1(答案不唯一)
y=-6x+1(答案不唯一)
(寫出一個(gè)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•天津)如圖,△ABC是⊙O的內(nèi)接三角形,AB為⊙O的直徑,點(diǎn)D為⊙O上一點(diǎn),若∠CAB=55°,則∠ADC的大小為
35
35
(度).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•天津)已知一個(gè)矩形紙片OACB,將該紙片放置在平面直角坐標(biāo)系中,點(diǎn)A(11,0),點(diǎn)B(0,6),點(diǎn)P為BC邊上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),經(jīng)過點(diǎn)O、P折疊該紙片,得點(diǎn)B′和折痕OP.設(shè)BP=t.

(Ⅰ)如圖①,當(dāng)∠BOP=30°時(shí),求點(diǎn)P的坐標(biāo);
(Ⅱ)如圖②,經(jīng)過點(diǎn)P再次折疊紙片,使點(diǎn)C落在直線PB′上,得點(diǎn)C′和折痕PQ,若AQ=m,試用含有t的式子表示m;
(Ⅲ)在(Ⅱ)的條件下,當(dāng)點(diǎn)C′恰好落在邊OA上時(shí),求點(diǎn)P的坐標(biāo)(直接寫出結(jié)果即可).

查看答案和解析>>

同步練習(xí)冊(cè)答案