【題目】如圖1,點(diǎn)P為∠MON的平分線上一點(diǎn),以P為頂點(diǎn)的角的兩邊分別與射線OM,ON交于A,B兩點(diǎn),如果∠APB繞點(diǎn)P旋轉(zhuǎn)時(shí)始終滿(mǎn)足,我們就把∠APB叫做∠MON的智慧角.

(1)如圖2,已知∠MON=90°,點(diǎn)P為∠MON的平分線上一點(diǎn),以點(diǎn)P為頂點(diǎn)的角的兩邊分別與射線OM,ON交于AB兩點(diǎn),且∠APB=135°. 求證:∠APB是∠MON的智慧角;

(2)如圖3,C是函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)C的直線CD分別交軸和軸于點(diǎn)A,B兩點(diǎn),且滿(mǎn)足BC=2CA,請(qǐng)求出∠AOB的智慧角∠APB的頂點(diǎn)P的坐標(biāo).

【答案】(1)證明見(jiàn)解析;(2)

【解析】試題分析:(1)由角平分線求出∠AOP=BOP=,MON=45°,再證出∠OAP=OPB,得出對(duì)應(yīng)邊成比例,得出OP2=OAOB,即可得出結(jié)論;

(2)設(shè)點(diǎn)Cab),則ab=3,過(guò)點(diǎn)CCHOAH;分兩種情況:

①當(dāng)點(diǎn)By軸正半軸上時(shí);當(dāng)點(diǎn)Ax軸的負(fù)半軸上時(shí),BC=2CA不可能;當(dāng)?shù)?/span>Ax軸的正半軸上時(shí);先求出,由平行線得出ACH∽△ABO,得出比例式:

,得出OB=3bOA=a,求出OAOB=,根據(jù)∠APB是∠AOB的智慧角,得出OP,即可得出點(diǎn)P的坐標(biāo);
②當(dāng)點(diǎn)By軸的負(fù)半軸上時(shí);由題意得出:AB=CA,由AAS證明ACH≌△ABO,得出OB=CH=b,OA=AH=a,得出OAOB=,求出OP,即可得出點(diǎn)P的坐標(biāo).

解:(1)證明:∵∠MON=90°,P為∠MON的平分線上一點(diǎn),

∴∠AOP=BOP=MON=45°,

∵∠AOP+OAP+APO=180°,

∴∠OAP+APO=135°,

∵∠APB=135°,

∴∠APO+OPB=135°,

∴∠OAP=OPB

AOPPOB,

,

OP2=OAOB

∴∠APB是∠MON的智慧角;

(2)設(shè)點(diǎn)C(a,b),則ab=3,

過(guò)點(diǎn)CCHOAH;分兩種情況:

①當(dāng)點(diǎn)By軸正半軸上時(shí);點(diǎn)Ax軸的負(fù)半軸上時(shí),如圖2:

BC=2CA不可能;

當(dāng)點(diǎn)Ax軸的正半軸上時(shí),如圖3:

BC=2CA,

CHOB,

ACHABO

,

OB=3b,OA=a,

OAOB=a3b=ab=,

∵∠APB是∠AOB的智慧角,

OP=,

∵∠AOB=90°,OP平分∠AOB,

∴點(diǎn)Px,y軸的距離相等為

∴點(diǎn)P的坐標(biāo)為:;

②當(dāng)點(diǎn)By軸的負(fù)半軸上時(shí),如圖4,

BC=2CA,

AB=CA

∵∠AHC=AOB=90°,

又∵∠BAO=CAH,

ACHABO(AAS),

OB=CH=b,OA=AH=a,

OAOB=ab=,

∵∠APB是∠AOB的智慧角,

OP=

∵∠AOB=90°,OP平分∠AOB,

∴點(diǎn)Px,y軸的距離相等為,

∴點(diǎn)P的坐標(biāo)為:;

綜上所述:點(diǎn)P的坐標(biāo)為: .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】﹣2015的相反數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各式中,不能應(yīng)用平方差公式進(jìn)行計(jì)算的是(

A.-x+2y)(2y+xB.x+y)(x-yC.a-b)(-a+bD.-2m+n)(-2m-n

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】回顧學(xué)習(xí)函數(shù)的過(guò)程,由函數(shù)的表達(dá)式通過(guò)列表、描點(diǎn)、連線畫(huà)出函數(shù)的圖象,再利用函數(shù)圖象研究函數(shù)的性質(zhì).這個(gè)過(guò)程中主要體現(xiàn)的數(shù)學(xué)方法是( 。

A. 數(shù)形結(jié)合 B. 類(lèi)比 C. 公理化 D. 歸納

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】桂林冬季里某一天最高氣溫是7℃,最低氣溫是﹣1℃,這一天桂林的溫差是( 。
A.﹣8℃
B.6℃
C.7℃
D.8℃

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在函數(shù)y=2x中,y的值隨x值的增大而_____.(填“增大”或“減小”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知空氣的單位體積質(zhì)量為1.24×103克/厘米3 , 1.24×103用小數(shù)表示為(
A.0.000124
B.0.0124
C.﹣0.00124
D.0.00124

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過(guò)點(diǎn)A(-3,0),對(duì)稱(chēng)軸為x=-1.給出四個(gè)結(jié)論:①b2 > 4ac;②2a+b=0;③a-b+c=0;④5a < b.其中正確結(jié)論有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對(duì)稱(chēng)軸是直線x=1.

b2>4ac; 4a-2b+c<0; ③不等式ax2+bx+c>0的解集是x≥3.5; ④若(-2,y1),(5,y2)是拋物線上的兩點(diǎn),則y1y2

上述4個(gè)判斷中,正確的是(  )

A. ①② B. ①④ C. ①③④ D. ②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案