(2013•海滄區(qū)一模)如圖,若AB是⊙O的直徑,CD是⊙O的弦,∠ABD=50°,則∠BCD=
40°
40°
分析:首先利用圓周角定理求得∠ADB是直角,在直角△ABD中,求得∠A的度數(shù),然后利用圓周角定理即可求解.
解答:解:∵AB是⊙O的直徑,
∴∠ADB=90°,
∴∠A=90°-∠ABD=90°-50°=40°,
∴∠BCD=∠A=40°.
故答案40°.
點評:本題考查了圓周角定理以及三角形的內(nèi)角和定理,是一個基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•海滄區(qū)一模)國家推行“節(jié)能減排,低碳經(jīng)濟”政策后,環(huán)保節(jié)能設(shè)備的產(chǎn)品供不應(yīng)求.某公司購進了A、B兩種節(jié)能產(chǎn)品,其中A種節(jié)能產(chǎn)品每件成本比B種節(jié)能產(chǎn)品多4萬元;若購買相同數(shù)量的兩種節(jié)能產(chǎn)品,A種節(jié)能產(chǎn)品要花120萬元,B種節(jié)能產(chǎn)品要花80萬元.已知A、B兩種節(jié)能產(chǎn)品的每周銷售數(shù)量y(件)與售價x(萬元/件)都滿足函數(shù)關(guān)系y=-x+20(x>0).
(1)求兩種節(jié)能產(chǎn)品的單價;
(2)若A種節(jié)能產(chǎn)品的售價比B種節(jié)能產(chǎn)品的售價高2萬元/件,求這兩種節(jié)能產(chǎn)品每周的總銷售利潤w(萬元)與A種節(jié)能產(chǎn)品售價x(萬元/件)之間的函數(shù)關(guān)系式;并說明A種節(jié)能產(chǎn)品的售價為多少時,每周的總銷售利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•海滄區(qū)一模)下面的數(shù)中,與-2的和為0的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•海滄區(qū)一模)下列計算正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•海滄區(qū)一模)對實數(shù)a、b定義新運算“*”如下:a*b=
a(a≥b)
b(a<b)
,如3*2=3,(-
5
)*
2
=
2
.若x2+x-2=0的兩根為x1,x2,則x1*x2是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•海滄區(qū)一模)如圖,在等腰直角三角形ABC中,AC=BC=2,D為AB上的動點(不與A,B重合),過D作DE⊥AC于E,DF⊥BC于F,設(shè)AD的長度為x,DE與DF的長度和為y.則能表示y與x之間的函數(shù)關(guān)系的圖象大致是( 。

查看答案和解析>>

同步練習(xí)冊答案