如圖,已知∠ABD=∠C=90°,AD=12,AC=BD,∠BAD=30°,則BC=   
【答案】分析:首先由直角三角形ABD中,∠BAD=30°,得BD=AD=6,則由已知得AC=BD=6,再由勾股定理求出AB,然后由直角三角形ACB運用勾股定理求出BC.
解答:解:已知∠ABD=∠C=90°,AD=12,AC=BD,∠BAD=30°,
∴BD=AD=×12=6,
∴AC=BD=6,
在直角三角形ABD中,根據(jù)勾股定理得:
AB===6,
在直角三角形ACB中,根據(jù)勾股定理得:
BC===6
故答案為:6
點評:此題考查的知識點是解直角三角形,關鍵是運用直角三角形中30°的性質和勾股定理求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、如圖,已知∠ABD=∠BDA=∠ADC=∠DCA=75度.請你寫出由已知條件能夠推出的四個有關線段關系的正確結論(注意:不添加任何字母和輔助線,線段關系僅限于垂直、相等)
AD平分線段BC
;②
BD=CD
;③
AB=AD=AC
;④
AD⊥BC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•江門模擬)如圖,已知△ABD和△ACE都是等邊三角形,CD、BE相交于點F.
(1)求證:△ABE≌△ADC;
(2)△ABE可由△ADC經過怎樣的旋轉變換得到?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABD沿BD平移到了△FCE的位置,BE=10,CD=4,則平移的距離是
3
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知∠ABD=∠ACD=90°,∠CBD=∠BCD,求證:AD平分∠BAC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABD和△ACE,AD=AE,∠1=∠2,要判定△ABD≌△ACE,還需要添加一個條件,這個條件可以是
AB=AC
AB=AC

查看答案和解析>>

同步練習冊答案