已知拋物線y=x2-(a+b)x+
c2
4
,a,b,c分別是∠A、∠B、∠C的對邊.
(1)求證:該拋物線與x軸必有兩個交點;
(2)設拋物線與x軸的兩個交點為P、Q,頂點為R,∠PQR=α,已知tanα=
5
,△ABC的周長為10,求拋物線的解析式;
(3)設直線y=ax-bc與拋物線交于點E、F,與y軸交于點M,若拋物線的對稱軸為x=a,O為坐標原點,S△MOE:S△MOF=5:1,試判斷△ABC的形狀,并證明你的結(jié)論.
分析:(1)由a+b>c得(a+b)2-c2>0,進而得該二次函數(shù)有兩個不同的根.即該二次函數(shù)與x軸有兩個交點.
(2)利用周長的和為10,頂點的縱坐標比上拋物線與x軸的右邊交點橫坐標與頂點橫坐標的差的值為正切值;解方程組求出(a+b)的值和c的值;代入解析式即可.
(3)求得a,b,c長度之間的關系,知道a=b=3,即可得三角形ABC為等腰三角形.
解答:解:( 1)由二次函數(shù)的判別式△=(a+b)2-4×
c2
4
=(a+b)2-c2
∵在三角形中a,b,c為三角形三邊
∴a+b>c
∴(a+b)2-c2>0
∴該二次函數(shù)有兩個不同的根.即該二次函數(shù)與x軸有兩個交點.
(2)由題意a+b+c=10①
二次函數(shù)的頂點(
a+b
2
,
c2(a+b)2
4
)②
二次函數(shù)的根為x=
a+b± 
(a+b)2-4c2
2

由題意得:
c2-(a+b)2
4
a+b+
(a+b)2-c2
2
-
a+b
2
=
5

由以上①②③④解得c=4,c=5(不符舍去)
則a+b=6
所以二次函數(shù)式為:y=x2-6x+4.
(3)由題意x=a=
a+b
2
=3
∴b=3
∴y=3x-12
∴三角形為等腰三角形.
點評:本題考查了二次函數(shù)的綜合計算,(1)利用三邊關系,來求得判別式大于0而得.(2)利用周長的和為10,頂點的縱坐標比上拋物線與x軸的右邊交點橫坐標與頂點橫坐標的差的值為正切值;解方程組求出(a+b)的值和c的值;代入解析式即可. (3)求得a=b=3,即求得三角形ABC為等腰三角形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知拋物線y=x2-8x+c的頂點在x軸上,則c等于( 。
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=x2+(1-2a)x+a2(a≠0)與x軸交于兩點A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范圍,并證明A、B兩點都在原點O的左側(cè);
(2)若拋物線與y軸交于點C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線y=-x2+bx+c與x軸負半軸交于點A,與y軸正半軸交于點B,且OA=OB.
精英家教網(wǎng)(1)求b+c的值;
(2)若點C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;
(3)在(2)的條件下,作∠OBC的角平分線,與拋物線交于點P,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•虹口區(qū)一模)如圖,在平面直角坐標系xOy中,已知拋物線y=x2+bx+c經(jīng)過A(0,3),B(1,0)兩點,頂點為M.
(1)求b、c的值;
(2)將△OAB繞點B順時針旋轉(zhuǎn)90°后,點A落到點C的位置,該拋物線沿y軸上下平移后經(jīng)過點C,求平移后所得拋物線的表達式;
(3)設(2)中平移后所得的拋物線與y軸的交點為A1,頂點為M1,若點P在平移后的拋物線上,且滿足△PMM1的面積是△PAA1面積的3倍,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•黔南州)已知拋物線y=x2-x-1與x軸的交點為(m,0),則代數(shù)式m2-m+2011的值為( 。

查看答案和解析>>

同步練習冊答案