【題目】綜合與探究
如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx-8與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,直線l經(jīng)過(guò)坐標(biāo)原點(diǎn)O,與拋物線的一個(gè)交點(diǎn)為D,與拋物線的對(duì)稱(chēng)軸交于點(diǎn)E,連接CE,已知點(diǎn)A,D的坐標(biāo)分別為(-2,0),(6,-8).
(1)求拋物線的解析式,并分別求出點(diǎn)B和點(diǎn)E的坐標(biāo);
(2)試探究拋物線上是否存在點(diǎn)F,使△FOE≌△FCE.若存在,請(qǐng)直接寫(xiě)出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1) y=x2-3x-8;(2)點(diǎn)F的坐標(biāo)為(3+,-4)或(3-,-4).
【解析】試題分析:(1)把A、D坐標(biāo)代入拋物線可求得拋物線的函數(shù)表達(dá)式,則拋物線的對(duì)稱(chēng)性可求得B點(diǎn)坐標(biāo),由D點(diǎn)坐標(biāo)可求得直線OD的解析式,則可求得E點(diǎn)坐標(biāo);
(2)結(jié)合(1)可知OE=CE,由全等三角形的性質(zhì)可知OF=CF,可知點(diǎn)F在線段OC的垂直平分線上,則可求得F點(diǎn)的縱坐標(biāo),代入拋物線解析式可求得F點(diǎn)的坐標(biāo).
試題解析:
(1)∵拋物線y=ax2+bx-8經(jīng)過(guò)點(diǎn)A(-2,0),D(6,-8),
∴
解得
∴拋物線的函數(shù)表達(dá)式為y=x23x8;
∵y=x23x8= (x3)2 ,
∴拋物線的對(duì)稱(chēng)軸為直線x=3.
又拋物線與x軸交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(-2,0).
∴點(diǎn)B的坐標(biāo)為(8,0),
設(shè)直線L的函數(shù)表達(dá)式為y=kx.
∵點(diǎn)D(6,-8)在直線L上,
∴6k=-8,解得k=- ,
∴直線L的函數(shù)表達(dá)式為y=-x,
∵點(diǎn)E為直線L和拋物線對(duì)稱(chēng)軸的交點(diǎn),
∴點(diǎn)E的橫坐標(biāo)為3,縱坐標(biāo)為-×3=-4,
∴點(diǎn)E的坐標(biāo)為(3,-4);
(2)拋物線上存在點(diǎn)F,使△FOE≌△FCE.
∵OE=CE=5,
∴FO=FC,
∴點(diǎn)F在OC的垂直平分線上,此時(shí)點(diǎn)F的縱坐標(biāo)為-4,
∴x2-3x-8=-4,解得x=3± ,
∴點(diǎn)F的坐標(biāo)為(3-,-4)或(3+,-4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形ABCD,點(diǎn)P為邊BC上一動(dòng)點(diǎn),連接AP,將線段AP繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,點(diǎn)A恰好落在直線CD上點(diǎn)E處
(1) 如圖1,點(diǎn)E在線段CD上,求證:AD+DE=2AB
(2) 如圖2,點(diǎn)E在線段CD的延長(zhǎng)線上,且點(diǎn)D 為線段CE的中點(diǎn),在線段BD上取點(diǎn)F,連接AF、PF,若AF=AB,求證:∠APF=∠ADB
(3) 如圖3,點(diǎn)E在線段CD上,連接BD.若AB=2,BD∥PE,則DE=___________ (直接寫(xiě)出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中點(diǎn)A的坐標(biāo)為(0,6),點(diǎn)B的坐標(biāo)為(﹣,5),將△AOB沿x軸向左平移得到△A′O′B′,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′落在直線y=﹣x上,則點(diǎn)B的對(duì)應(yīng)點(diǎn)B′的坐標(biāo)為( )
A.(﹣8,6)B.(﹣,5)C.(﹣,5)D.(﹣8,5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義一種對(duì)正整數(shù)n的“F運(yùn)算”:①當(dāng)n為奇數(shù)時(shí),結(jié)果為3n+5;②當(dāng)n為偶數(shù)時(shí),結(jié)果為(其中k是使為奇數(shù)的最小正整數(shù)),并且運(yùn)算重復(fù)進(jìn)行.例如:取n=26,則運(yùn)算過(guò)程如圖:
那么當(dāng)n=26時(shí),第2016次“F運(yùn)算”的結(jié)果是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】風(fēng)電已成為我國(guó)繼煤電、水電之后的第三大電源,風(fēng)電機(jī)組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設(shè)你站在A處測(cè)得塔桿頂端C的仰角是55°,沿HA方向水平前進(jìn)43米到達(dá)山底G處,在山頂B處發(fā)現(xiàn)正好一葉片到達(dá)最高位置,此時(shí)測(cè)得葉片的頂端D(D、C、H在同一直線上)的仰角是45°.已知葉片的長(zhǎng)度為35米(塔桿與葉片連接處的長(zhǎng)度忽略不計(jì)),山高BG為10米,BG⊥HG,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】求若干個(gè)相同的不為零的有理數(shù)的除法運(yùn)算叫做除方. 如:2÷2÷2,(-3)÷(-3)÷(-3 )÷( -3)等. 類(lèi)比有理數(shù)的乘方,我們把 2÷2÷2 記作 2③,讀作“2 的圈 3 次方”. (-3)÷(-3)÷(-3 )÷( -3)記作(-3)④,讀作“-3 的圈 4 次方”.
一般地,把(a≠0)記作a,記作“a 的圈c次方”.
(1)直接寫(xiě)出計(jì)算結(jié)果:2③= ,(-3)④ = ,⑤= .
(2)計(jì)算 24÷23 + (-8)×2③.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=(x+2)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B在拋物線上,且與點(diǎn)C關(guān)于拋物線的對(duì)稱(chēng)軸對(duì)稱(chēng),已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)該二次函數(shù)圖象上的點(diǎn)A(﹣1,0)及點(diǎn)B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫(xiě)出滿足(x+2)2+m≥kx+b的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC 中,點(diǎn)O是AC邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的角平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F
(1)求證:EO=FO;
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)O是AC邊上(端點(diǎn)除外)的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MN∥BC.設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F,連接AE、AF.那么當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com