【題目】某班“數(shù)學興趣小組”對函數(shù)y=+x的圖象與性質(zhì)進行了探究,探究過程如下,請補充完整.
(1)函數(shù)y=+x的自變量x的取值范圍是 ;
(2)下表是y與x的幾組對應值.
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 2 | 3 | 4 | 5 | … | ||||
y | … | ﹣ | ﹣ | ﹣ | ﹣1 | ﹣ | ﹣ | 3 | m |
| … |
求m的值;
(3)如圖,在平面直角坐標系xOy中,描出了以上表中各對對應值為坐標的點,根據(jù)描出的點,畫出該函數(shù)的圖象;
(4)進一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點的坐標是(2,3),結(jié)合函數(shù)的圖象,寫出該函數(shù)的其它性質(zhì)(一條即可): .
(5)小明發(fā)現(xiàn),①該函數(shù)的圖象關(guān)于點( , )成中心對稱;
②該函數(shù)的圖象與一條垂直于x軸的直線無交點,則這條直線為 ;
③直線y=m與該函數(shù)的圖象無交點,則m的取值范圍為 .
【答案】(1)x≠1,(2),(4)x>2時y隨x的增大而增大,
(5)①( ,),②x=1,③﹣1<m<3.
【解析】
(1)令分母不等于零即可求出變量x的取值范圍;
(2)把x=4代入y=+x即可求出m的值;
(3)用光滑曲線把各點順次連接即可;
(4)根據(jù)圖像解答即可,如x>2時y隨x的增大而增大.(答案不唯一);
(5)根據(jù)圖像解答即可.
(1)函數(shù)y=+x的自變量x的取值范圍是x≠1.
故答案為x≠1.
(2)x=4時,y=,
∴m=.
(3)函數(shù)圖象如圖所示:
(4)x>2時y隨x的增大而增大.(答案不唯一)
故答案為:x>2時y隨x的增大而增大.
(5)①該函數(shù)的圖象關(guān)于點(1,1)成中心對稱;
②該函數(shù)的圖象與一條垂直于x軸的直線無交點,則這條直線為x=1;
③直線y=m與該函數(shù)的圖象無交點,則m的取值范圍為﹣1<m<3;
故答案為1,1,x=1,﹣1<m<3;
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB∥CD,CE、BE的交點為E,現(xiàn)作如下操作:
第一次操作,分別作∠ABE和∠DCE的平分線,交點為E1,
第二次操作,分別作∠ABE1和∠DCE1的平分線,交點為E2,
第三次操作,分別作∠ABE2和∠DCE2的平分線,交點為E3,…,
第n次操作,分別作∠ABEn﹣1和∠DCEn﹣1的平分線,交點為En.
若∠En=1度,那∠BEC等于 度
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O與AC邊交于點D,過點D作⊙O的切線交BC于點E,連接OE
(1)證明OE∥AD;
(2)①當∠BAC= °時,四邊形ODEB是正方形.
②當∠BAC= °時,AD=3DE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學課上張老師將課本44頁第4題進行了改編,圖形不變.請你完成下問題.
(1)如圖1,∠ACB=∠ADB,BC=BD,求證:△ABC≌△ABD.
(2)如圖2,∠CAB=∠DAB,BC=BD,求證:△ABC≌△ABD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC與△DBC中,∠ACB=∠DBC=90°,E是BC的中點,EF⊥AB,AB=DE.
(1)求證:BC=DB;
(2)若BD=8cm,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”.
(1)概念理解:
如圖1,在△ABC中,AC=6,BC=3,∠ACB=30°,試判斷△ABC是否是”等高底”三角形,請說明理由.
(2)問題探究:
如圖2,△ABC是“等高底”三角形,BC是”等底”,作△ABC關(guān)于BC所在直線的對稱圖形得到△A'BC,連結(jié)AA′交直線BC于點D.若點B是△AA′C的重心,求的值.
(3)應用拓展:
如圖3,已知l1∥l2,l1與l2之間的距離為2.“等高底”△ABC的“等底”BC在直線l1上,點A在直線l2上,有一邊的長是BC的倍.將△ABC繞點C按順時針方向旋轉(zhuǎn)45°得到△A'B'C,A′C所在直線交l2于點D.求CD的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰△ABC中,AB=AC,∠ACB=72°,
(1)若BD⊥AC于D,求∠ABD的度數(shù);
(2)若CE平分∠ACB,求證:AE=BC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com