【題目】如圖,直線l和雙曲線 交于A,B兩點(diǎn),P是線段AB上的點(diǎn)(不與A,B重合),過(guò)點(diǎn)A,B,P分別向x軸作垂線,垂足分別為C,D,E,連接OA,OB,0P,設(shè)△AOC的面積為S1、△BOD的面積為S2、△POE的面積為S3 , 則( )

A.S1<S2<S3
B.S1>S2>S3
C.S1=S2>S3
D.S1=S2<S3

【答案】D
【解析】結(jié)合題意可得:AB都在雙曲線y= 上,

則有S1=S2;

而AB之間,直線在雙曲線上方;

故S1=S2<S3

所以答案是:D.

【考點(diǎn)精析】根據(jù)題目的已知條件,利用比例系數(shù)k的幾何意義的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ΔABC中,P為AB上一點(diǎn),在下列四個(gè)條件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=APAB;④ABCP=APCB,任選一個(gè),使ΔAPC與ΔACB相似的條件可以是( )
A.①或②或③
B.①或③或④
C.②或③或④
D.①或②或④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校七年級(jí)社會(huì)實(shí)踐小組去某商場(chǎng)調(diào)查商品的銷(xiāo)售情況,了解到該商場(chǎng)以每件80元的價(jià)格購(gòu)進(jìn)了某品牌襯衫500件,并以每件120元的價(jià)格銷(xiāo)售了400件,商場(chǎng)準(zhǔn)備采取促銷(xiāo)措施,將剩下的襯衫降價(jià)銷(xiāo)售.
(1)每件襯衫降價(jià)多少元時(shí),銷(xiāo)售完這批襯衫正好達(dá)到盈利45%的預(yù)期目標(biāo)?
(2)某公司給員工發(fā)福利,在該商場(chǎng)促銷(xiāo)錢(qián)購(gòu)買(mǎi)了20件該品牌的襯衫發(fā)給員工,后因?yàn)橛行聠T工加入,又要購(gòu)買(mǎi)5件該襯衫,購(gòu)買(mǎi)這5件襯衫時(shí)恰好趕上該商場(chǎng)進(jìn)行促銷(xiāo)活動(dòng),求該公司購(gòu)買(mǎi)這25件襯衫的平均價(jià)格.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,已知點(diǎn)D、E分別為BCAD的中點(diǎn),EF=2FC,且ABC的面積為12,則BEF的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:若,求m、n的值.

解:∵,

,而,,

,

n=4,m=4

根據(jù)你的觀察,探究下面的問(wèn)題:

(1),則a=______;b=_________

(2)已知ABC的三邊a,b,c滿足=0,

關(guān)于此三角形的形狀的以下命題:①它是等邊三角形;②它屬于等腰三角形:③它屬于銳角三角形;④它不是直角三角形.其中所有正確命題的序號(hào)為________________

(3)已知ABC的三邊長(zhǎng)a、b、c都是正整數(shù),且,求ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)(0,﹣3),請(qǐng)你確定一個(gè)b的值,使該拋物線與x軸的一個(gè)交點(diǎn)在(1,0)和(3,0)之間.你確定的b的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校計(jì)劃購(gòu)買(mǎi)籃球、排球共20個(gè),購(gòu)買(mǎi)2個(gè)籃球,3個(gè)排球,共需花費(fèi)190元;購(gòu)買(mǎi)3個(gè)籃球的費(fèi)用與購(gòu)買(mǎi)5個(gè)排球的費(fèi)用相同。

(1)籃球和排球的單價(jià)各是多少元?

(2)若購(gòu)買(mǎi)籃球不少于8個(gè),所需費(fèi)用總額不超過(guò)800元.請(qǐng)你求出滿足要求的所有購(gòu)買(mǎi)方案,并直接寫(xiě)出其中最省錢(qián)的購(gòu)買(mǎi)方案

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程kx2+(2k+1)x+2=0.
(1)求證:無(wú)論k取任何實(shí)數(shù)時(shí),方程總有實(shí)數(shù)根;
(2)當(dāng)拋物線y=kx2+(2k+1)x+2圖象與x軸兩個(gè)交點(diǎn)的橫坐標(biāo)均為整數(shù),且k為正整數(shù)時(shí),若P(a,y1),Q(1,y2)是此拋物線上的兩點(diǎn),且y1>y2 , 請(qǐng)結(jié)合函數(shù)圖象確定實(shí)數(shù)a的取值范圍;
(3)已知拋物線y=kx2+(2k+1)x+2恒過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,AD是高,AE、BF是角平分線,它們相交于點(diǎn)O,∠BAC=60°,∠C=50°,求∠DAC及∠BOA的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案