【題目】
(1)如圖,AB⊥BD于點B,ED⊥BD于點D,AE交BD于點C,且BC=DC.求證:AB=ED.
(2)植樹節(jié)期間,兩所學校共植樹834棵,其中海石中學植樹的數(shù)量比勵東中學的2倍少3棵,兩校各植樹多少棵?

【答案】
(1)證明:∵AB⊥BD,ED⊥BD

∴∠ABC=∠D=90°,

在△ABC和△EDC中 ,

∴△ABC≌△EDC,

∴AB=ED


(2)解:設勵東中學植樹x棵,

依題意,得x+(2x﹣3)=834,

解得x=279,

∴2x﹣3=2×279﹣3=555,

答:勵東中學植樹279棵,海石中學植樹555棵


【解析】(1)根據(jù)已知條件可判斷出△ABC≌△EDC,根據(jù)全等三角形的性質即可得出AB=ED,(2)設勵東中學植樹x棵,可知海石中學植樹2x﹣3顆,根據(jù)題意列出方程,解出x的值,即可得出結果.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知整數(shù)滿足下列條件:=0,=﹣|+1|,=﹣|+2|,=﹣|+3|,……以此類推,則的值為(  )

A. ﹣1007 B. ﹣1008 C. ﹣1009 D. ﹣2018

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在y軸正半軸上依次截取OA1=A1A2=A2A3=…=An1An(n為正整數(shù)),過A1 , A2 , A3 , …,An分別作x軸的平行線,與反比例函數(shù)y= (x>0)交于點B1 , B2 , B3 , …,Bn , 如圖所示的Rt△B1C1B2 , Rt△B2C2B3 , Rt△B3C3B4 , …,Rt△Bn1Cn1Bn面積分別記為S1 , S2 , S3 , …,Sn1 , 則S1+S2+S3+…+Sn1=(

A.1
B.2
C.1﹣
D.2﹣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一架長2.5m的梯子AB斜靠在墻AC上,∠C=90°,此時,梯子的底端B離墻底C的距離BC0.7m.

(1)求此時梯子的頂端A距地面的高度AC;

(2)如果梯子的頂端A下滑了0.9m,那么梯子的頂端B在水平方向上向右滑動了多遠?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)y=kx+b和函數(shù)y=ax+m的圖像如圖所示,求下列不等式(組)的解集

(1) kx+bax+m的解集是

(2)的解集是

(3)的解集是

(4)的解集是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在結束了380課時初中階段數(shù)學內容的教學后,唐老師計劃安排60課時用于總復習,根據(jù)數(shù)學內容所占課時比例,繪制如下統(tǒng)計圖表(圖1~圖3),請根據(jù)圖表提供的信息,回答下列問題:

(1)圖1中“統(tǒng)計與概率”所在扇形的圓心角為度;
(2)圖2、3中的a= , b=;
(3)在60課時的總復習中,唐老師應安排多少課時復習“數(shù)與代數(shù)”內容?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠A=90°,O是BC邊上一點,以O為圓心的半圓分別與AB、AC邊相切于D、E兩點,連接OD.已知BD=2,AD=3.
求:
(1)tanC;
(2)圖中兩部分陰影面積的和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個正兩位數(shù)的個位數(shù)字是a,十位數(shù)字比個位數(shù)字大2.

(1)列式表示這個兩位數(shù);

(2)把這個兩位數(shù)的十位上的數(shù)字與個位上的數(shù)字交換位置得到一個新的兩位數(shù),試說明新數(shù)與原數(shù)的和能被22整除.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,ABCD的四個頂點的坐標分別為A(0,8),B(﹣6,8),C(﹣6,0),D(0,0),現(xiàn)有動點P在線段CB上運動,當△ADP為等腰三角形時,P點坐標為

查看答案和解析>>

同步練習冊答案