【題目】如圖,直線y= x+2與雙曲線相交于點A(m,3),與x軸交于點C.
(1)求雙曲線解析式;
(2)點P在x軸上,如果△ACP的面積為3,求點P的坐標.

【答案】
(1)解:把A(m,3)代入直線解析式得:3= m+2,即m=2,

∴A(2,3),

把A坐標代入y= ,得k=6,

則雙曲線解析式為y=


(2)解:對于直線y= x+2,令y=0,得到x=﹣4,即C(﹣4,0),

設(shè)P(x,0),可得PC=|x+4|,

∵△ACP面積為3,

|x+4|3=3,即|x+4|=2,

解得:x=﹣2或x=﹣6,

則P坐標為(﹣2,0)或(﹣6,0)


【解析】(1)把A坐標代入直線解析式求出m的值,確定出A坐標,即可確定出雙曲線解析式;(2)設(shè)P(x,0),表示出PC的長,高為A縱坐標,根據(jù)三角形ACP面積求出x的值,確定出P坐標即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,以點C為圓心5cm為半徑的圓與直線AB的位置關(guān)系是(
A.相交
B.相切
C.相離
D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處.且△OCP與△PDA的面積比為1:4
(1)如圖1,已知折痕與邊BC交于點O,連結(jié)AP、OP、OA.
①求證:△OCP∽△PDA;
②求邊AB的長;

(2)如圖2,連結(jié)AP、BP.動點M在線段AP上(點M與點P、A不重合),動點N在線段AB的延長線上,且BN=PM,連結(jié)MN交PB于點F,作ME⊥BP于點E.試問當點M、N在移動過程中,線段EF的長度是否發(fā)生變化?若變化,說明理由;若不變,求出線段EF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)為提倡節(jié)約用水,準備實行自來水“階梯計費”方式,用戶用水不超出基本用水量的部分享受基本價格,超出基本用水量的部分實行加價收費.為更好地決策,自來水公司隨機抽取部分用戶的用水量數(shù)據(jù),并繪制了如下不完整的統(tǒng)計圖(每組數(shù)據(jù)包括右端點但不包括左端點),請你根據(jù)統(tǒng)計圖解答下列問題:
(1)此次調(diào)查抽取了多少用戶的用水量數(shù)據(jù)?
(2)補全頻數(shù)分布直方圖,求扇形圖中“15噸~20噸”部分的圓心角的度數(shù);
(3)如果自來水公司將基本用水量定為每戶25噸,那么該地區(qū)20萬用戶中約有多少用戶的用水全部享受基本價格?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:|1﹣2sin45°|﹣ +( 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+2x+3與x軸交于A,B兩點(點A在點B的左邊),與y軸交于點C,連接BC.

(1)求A,B,C三點的坐標;
(2)若點P為線段BC上一點(不與B,C重合),PM∥y軸,且PM交拋物線于點M,交x軸于點N,當△BCM的面積最大時,求點P的坐標;
(3)在(2)的條件下,當△BCM的面積最大時,在拋物線的對稱軸上存在一點Q,使得△CNQ為直角三角形,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】哈市某中學(xué)為了解學(xué)生的課余生活情況,學(xué)校決定圍繞“在欣賞音樂、讀課外書、體育運動.其他活動中,你最喜歡的課余生活種類是什么?(只寫一類)”的問題,在全校范圍內(nèi)隨機抽取部分學(xué)生進行問卷調(diào)查,并將調(diào)查問卷適當整理后繪制成如圖所示的不完整的條形統(tǒng)計圖,其中最喜歡欣賞音樂的學(xué)生占被抽取人數(shù)的12%,請你根據(jù)以上信息解答下列問題:
(1)在這次調(diào)查中,一共抽取了多少名學(xué)生?
(2)最喜歡讀課外書的學(xué)生占被抽取人數(shù)的百分數(shù)是多少?
(3)如果全校有1000名學(xué)生,請你估計全校最喜歡體育運動的學(xué)生約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過D、A、C三點的圓的圓心為E,過B、E、F三點的圓的圓心為D,如果∠A=63°,那么∠B=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為4,點E、F分別在邊AB、ABC上,且AE=BF=1,CE、DF相交于點O,下列結(jié)論: ①∠DOC=90°,②OC=OE,③tan∠OCD= ,④△COD的面積等于四邊形BEOF的面積中,正確的有 (

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習(xí)冊答案