【題目】矩形ABCD中,AB=4,AD=3,P,Q是對角線BD上不重合的兩點(diǎn),點(diǎn)P關(guān)于直線AD,AB的對稱點(diǎn)分別是點(diǎn)E、F,點(diǎn)Q關(guān)于直線BC、CD的對稱點(diǎn)分別是點(diǎn)G、H.若由點(diǎn)E、F、G、H構(gòu)成的四邊形恰好為菱形,則PQ的長為

【答案】2.8
【解析】解:由矩形ABCD中,AB=4,AD=3,可得對角線AC=BD=5.
依題意畫出圖形,如圖所示.

由軸對稱性質(zhì)可知,∠PAF+∠PAE=2∠PAB+2∠PAD=2(∠PAB+∠PAD)=180°,
∴點(diǎn)A在菱形EFGH的邊EF上.同理可知,點(diǎn)B、C、D均在菱形EFGH的邊上.
∵AP=AE=AF,∴點(diǎn)A為EF中點(diǎn).同理可知,點(diǎn)C為GH中點(diǎn).
連接AC,交BD于點(diǎn)O,則有AF=CG,且AF∥CG,
∴四邊形ACGF為平行四邊形,
∴FG=AC=5,即菱形EFGH的邊長等于矩形ABCD的對角線長.
∴EF=FG=5,
∵AP=AE=AF,∴AP= EF=2.5.
∵OA= AC=2.5,
∴AP=AO,即△APO為等腰三角形.
過點(diǎn)A作AN⊥BD交BD于點(diǎn)N,則點(diǎn)N為OP的中點(diǎn).
由SABD= ABAD= ACAN,可求得:AN=2.4.
在Rt△AON中,由勾股定理得:ON= = =0.7,
∴OP=2ON=1.4;
同理可求得:OQ=1.4,
∴PQ=OP+OQ=1.4+1.4=2.8.
所以答案是:2.8.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線lAC:y=﹣x軸、y軸分別為A、C兩點(diǎn),直線BCACx軸于點(diǎn)B.

(1)求點(diǎn)B的坐標(biāo)及直線BC的解析式;

(2)將△OBC關(guān)于BC邊翻折,得到△O′BC,過點(diǎn)O′作直線O′E垂直x軸于點(diǎn)E,F(xiàn)y軸上一點(diǎn),P是直線O′E上任意一點(diǎn),P、Q兩點(diǎn)關(guān)于x軸對稱,當(dāng)|PA﹣PC|最大時(shí),請求出QF+FC的最小值;

(3)M是直線O′E上一點(diǎn),且QM=3,在(2)的條件下,在平面直角坐標(biāo)系中,是否存在點(diǎn)N,使得以Q、F、M、N四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出點(diǎn)N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對反比例函數(shù) ,下列說法不正確的是(
A.它的圖象在第一、三象限
B.點(diǎn)(﹣1,﹣4)在它的圖象上
C.當(dāng)x<0時(shí),y隨x的增大而減小
D.當(dāng)x>0時(shí),y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是我國古代計(jì)時(shí)器“漏壺”的示意圖,在壺內(nèi)盛一定量的水,水從壺底的小孔漏出.壺壁內(nèi)畫有刻度,人們根據(jù)壺中水面的位置計(jì)時(shí),用x表示時(shí)間,y表示壺底到水面的高度,則y與x的函數(shù)關(guān)系式的圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】龜兔首次賽跑之后,輸了比賽的兔子沒有氣餒,總結(jié)反思后,和烏龜約定再賽一場.圖中的函數(shù)圖象刻畫了龜兔再次賽跑的故事(x表示烏龜從起點(diǎn)出發(fā)所行的時(shí)間,y1表示烏龜所行的路程,y2表示兔子所行的路程).有下列說法:

龜兔再次賽跑的路程為1000

兔子和烏龜同時(shí)從起點(diǎn)出發(fā);

烏龜在途中休息了10分鐘;

兔子在途中750處追上烏龜.

其中正確的說法是   .(把你認(rèn)為正確說法的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明為準(zhǔn)備體育中考,每天早晨堅(jiān)持鍛煉,某天他慢跑到江邊,休息一會后快跑回家,能大致反映小明離家的距離y(m)與時(shí)間x(s)的函數(shù)關(guān)系圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=(x﹣3)(x+1)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,點(diǎn)D為頂點(diǎn).

(1)求點(diǎn)B及點(diǎn)D的坐標(biāo).
(2)連結(jié)BD,CD,拋物線的對稱軸與x軸交于點(diǎn)E.
①若線段BD上一點(diǎn)P,使∠DCP=∠BDE,求點(diǎn)P的坐標(biāo).
②若拋物線上一點(diǎn)M,作MN⊥CD,交直線CD于點(diǎn)N,使∠CMN=∠BDE,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“珍重生命,注意安全!”同學(xué)們在上下學(xué)途中一定要注意騎車安全.小明騎單車上學(xué),當(dāng)他騎了一段時(shí)間,想起要買某本書,于是又折回到剛經(jīng)過的新華書店,買到書后繼續(xù)去學(xué)校,以下是他本次所用的時(shí)間與路程的關(guān)系示意圖.根據(jù)圖中提供的信息回答下列問題:

(1)圖中自變量是______,因變量是______;

(2)小明家到學(xué)校的路程是 米;

(3)小明在書店停留了 分鐘;

(4)本次上學(xué)途中,小明一共行駛了 米,一共用了 分鐘;

(5)我們認(rèn)為騎單車的速度超過300米/分鐘就超越了安全限度.問:在整個(gè)上學(xué)的途中哪個(gè)時(shí)間段小明騎車速度最快,速度在安全限度內(nèi)嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售甲、乙兩種品牌的智能手機(jī),這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如下表:

進(jìn)價(jià)(元/部)

4000

2500

售價(jià)(元/部)

4300

3000

該商場計(jì)劃購進(jìn)兩種手機(jī)若干部,共需15.5萬元,預(yù)計(jì)全部銷售后可獲毛利潤共2.1萬元.
(毛利潤=(售價(jià)﹣進(jìn)價(jià))×銷售量)
(1)該商場計(jì)劃購進(jìn)甲、乙兩種手機(jī)各多少部?
(2)通過市場調(diào)研,該商場決定在原計(jì)劃的基礎(chǔ)上,減少甲種手機(jī)的購進(jìn)數(shù)量,增加乙種手機(jī)的購進(jìn)數(shù)量.已知乙種手機(jī)增加的數(shù)量是甲種手機(jī)減少的數(shù)量的2倍,而且用于購進(jìn)這兩種手機(jī)的總資金不超過16萬元,該商場怎樣進(jìn)貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤.

查看答案和解析>>

同步練習(xí)冊答案