(2012•西城區(qū)模擬)我們在幾何的學習中能發(fā)現(xiàn),很多圖形的性質定理與判定定理之間有著一定的聯(lián)系.例如:菱形的性質定理“菱形的對角線互相垂直”和菱形的判定定理“對角線互相垂直的平行四邊形是菱形”就是這樣.但是課本中對菱形的另外一個性質“菱形的對角線平分一組對角”卻沒有給出類似的判定定理,請你利用如圖所示圖形研究一下這個問題.
要求:如果有類似的判定定理,請寫出已知、求證并證明.如果沒有,請舉出反例.
分析:有判定定理,可把命題“菱形的對角線平分一組對角”的題設作為已知,把結論作為求證的結果,再利用已有的證明四邊形為菱形的方法證明即可.
解答:答:有判定定理.
已知:在平行四邊形ABCD中,對角線AC平分∠DAB和∠DCB
求證:四邊形ABCD是菱形,
證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠DAC=∠ACB,
∵∠ACB=∠ACD,
∴∠DAC=∠ACD,
∴AD=DC,
∴四邊形ABCD是菱形.
點評:本題考查平行四邊形的性質和菱形的判定方法,解題的關鍵是熟記各種特殊四邊形的性質和其判定方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•西城區(qū)一模)(1)解不等式:x>
1
2
x+1
;            
(2)解方程組
x-2y=0
3x+2y=8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•西城區(qū)一模)已知:如圖,A點坐標為(-
32
,0)
,B點坐標為(0,3).
(1)求過A,B兩點的直線解析式;
(2)過B點作直線BP與x軸交于點P,且使OP=2OA,求△ABP的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•西城區(qū)一模)已知:如圖1,矩形ABCD中,AB=6,BC=8,E、F、G、H分別是AB、BC、CD、DA四條邊上的點(且不與各邊頂點重合),設m=EF+FG+GH+HE,探索m的取值范圍.
(1)如圖2,當E、F、G、H分別是AB、BC、CD、DA四邊中點時,m=
20
20

(2)為了解決這個問題,小貝同學采用軸對稱的方法,如圖3,將整個圖形以CD為對稱軸翻折,接著再連續(xù)翻折兩次,
從而找到解決問題的途徑,求得m的取值范圍.①請在圖3中補全小貝同學翻折后的圖形;②m的取值范圍是
20≤m<28
20≤m<28

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•西城區(qū)一模)已知一元二次方程x2+ax+a-2=0.
(1)求證:不論a為何實數(shù),此方程總有兩個不相等的實數(shù)根;
(2)設a<0,當二次函數(shù)y=x2+ax+a-2的圖象與x軸的兩個交點的距離為
13
時,求出此二次函數(shù)的解析式;
(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于A、B兩點,在函數(shù)圖象上是否存在點P,使得△PAB的面積為
3
13
2
?若存在求出P點坐標,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•西城區(qū)二模)將代數(shù)式x2-6x+10化為(x-m)2+n的形式(其中m,n為常數(shù)),結果為
(x-3)2+1
(x-3)2+1

查看答案和解析>>

同步練習冊答案