【題目】已知點C是線段AB的中點
(1)如圖,若點D在線段CB上,且BD=1.5厘米,AD=6.5厘米,求線段CD的長度;
(2)若將(1)中的“點D在線段CB上”改為“點D在線段CB的延長線上”,其他條件不變,請畫出相應的示意圖,并求出此時線段CD的長度.
【答案】(1)CD=2.5厘米;(2)CD=4厘米.
【解析】
根據BD+AD=AB可求出AB的長,利用中點的定義可求出BC的長,根據CD=BC-BD求出CD的長即可;(2)根據題意畫出圖形,利用線段中點的定義及線段的和差關系求出CD的長即可.
(1)∵BD=1.5厘米,AD=6.5厘米,
∴AB=BD+AD=8(厘米),
∵點C是線段AB的中點,
∴BC=AB=4(厘米)
∴CD=BC-BD=2.5(厘米).
(2)當點D在線段CB的延長線上時,如圖所示:
∵BD=1.5厘米,AD=6.5厘米,
∴AB=AD-BD=5(厘米),
∵點C是線段AB的中點,
∴BC=AB=2.5(厘米)
∴CD=BC+BD=4(厘米)
科目:初中數學 來源: 題型:
【題目】某研究性學習小組進行了探究活動.如圖,已知一架竹梯AB斜靠在墻角MON處,竹梯AB=13m,梯子底端離墻角的距離BO=5m.
(1)求這個梯子頂端A距地面有多高;
(2)如果梯子的頂端A下滑4 m到點C,那么梯子的底部B在水平方向上滑動的距離BD=4 m嗎?為什么?
(3)亮亮在活動中發(fā)現無論梯子怎么滑動,在滑動的過程中梯子上總有一個定點到墻角O的距離始終是不變的定值,會思考問題的你能說出這個點并說明其中的道理嗎?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A. B在雙曲線y= (x>0)上,AC⊥x軸于C,BD⊥y軸于點D,AC與BD交于點P,P是AC的中點.
(1)設A的橫坐標為m,試用m、k表示B的坐標.
(2)試判斷四邊形ABCD的形狀,并說明理由.
(3)若△ABP的面積為3,求該雙曲線的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的是
A. “明天降雨的概率是80%”表示明天有80%的時間都在降雨
B. “拋一枚硬幣正面朝上的概率為”表示每拋2次就有一次正面朝上
C. “彩票中獎的概率為1%”表示買100張彩票肯定會中獎
D. “拋一枚正方體骰子,朝上的點數為2的概率為”表示隨著拋擲次數的增加,“拋出朝上的點數為2”這一事件發(fā)生的頻率穩(wěn)定在附近
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】興趣小組的同學要測量樹的高度.在陽光下,一名同學測得一根 長為 1 米的竹竿的影長為 0.4 米,同時另一名同學測量樹的高度時, 發(fā)現樹的影子不全落在地面上,有一部分落在教學樓的第一級臺 階水平面上,測得此影子長為 0.2 米,一級臺階高為 0.3 米,如圖 所示,若此時落在地面上的影長為 4.4 米,則樹高為( )
A.11.8 米B.11.75 米
C.12.3 米D.12.25 米
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,∠ACB的平分線交AB于點D,交⊙O于點E,過點C作⊙O的切線CP交BA的延長線于點P,連接AE.
(1)求證:PC=PD;
(2)若AC=5cm,BC=12cm,求線段AE,CE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,3個正方形在⊙O直徑的同側,頂點B、C、G、H都在⊙O的直徑上,正方形ABCD的頂點A在⊙O上,頂點D在PC上,正方形EFGH的頂點E在⊙O上、頂點F在QG上,正方形PCGQ的頂點P也在⊙O上.若BC=1,GH=2,則CG的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算
(1)(+12)﹣(﹣7)+(﹣5)﹣(+30)
(2)
(3)﹣33×(﹣2)﹣12÷[(﹣3)﹣(﹣1)]
(4)(﹣)×(﹣3)3﹣0.25×(﹣3)×(﹣2)4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】反比例函數y= (a>0,a為常數)和y=在第一象限內的圖象如圖所示,點M在y=的圖象上,MC⊥x軸于點C,交y=的圖象于點A;MD⊥y軸于點D,交y=的圖象于點B.當點M在y=的圖象上運動時,以下結論:①S△ODB=S△OCA;②四邊形OAMB的面積不變;③當點A是MC的中點時,則點B是MD的中點.其中正確結論的個數是( )
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com