用整體思想解題:為了簡化問題,我們往往把一個(gè)式子看成一個(gè)數(shù)的整體.試按提示解答下面問題.
(1)已知A+B=3x2-5x+1,A-C=-2x+3x2-5,求當(dāng)x=2時(shí)B+C的值.
提示:B+C=(A+B)-(A-C).
(2)若代數(shù)式2x2+3y+7的值為8,求代數(shù)式6x2+9y+8的值.
提示:把6x2+9 y+8變形為含有2x2+3y+7的形式.
(3)已知
xy
x+y
=2
,求代數(shù)式
3x-5xy+3y
-x+3xy-y
的值.
提示:把xy和x+y當(dāng)做一個(gè)整體;由已知得xy=2(x+y),代入
3x-5xy+3y
-x+3xy-y
分析:(1)按提示把A+B和A-C整體代入,可得B+C的表達(dá)式,然后再代值計(jì)算即可.
(2)按提示把后個(gè)代數(shù)式轉(zhuǎn)化為第一個(gè)代數(shù)式的變形式,然后把第一個(gè)代數(shù)式的結(jié)果代入,可簡化運(yùn)算.
(3)把代數(shù)式先進(jìn)行合并同類項(xiàng),然后按提示把xy和x+y當(dāng)做一個(gè)整體;由已知得xy=2(x+y),代入求值即可.
解答:解:(1)∵B+C=(A+B)-(A-C),
∴B+C=3x2-5x+1-(-2x+3x2-5)=-3x+6;
當(dāng)x=2時(shí),上式=-6+6=0;
(2)∵6x2+9 y+8=3(2x2+3y)+8,
已知2x2+3y+7=8,得2x2+3y=1
∴上式=3×1+8=11;
(3)原代數(shù)式=
3(x+y)-5xy
3xy-(x+y)
,由已知得xy=2(x+y),
所以原式=
-7(x+y)
5(x+y)
=-
7
5
點(diǎn)評(píng):本題主要考查了用整體思想解題,為了簡化問題,我們往往把一個(gè)式子看成一個(gè)數(shù)的整體,可以達(dá)到簡化運(yùn)算的目的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、提示“用整體思想解題:為了簡化問題,我們往往把一個(gè)式子看成一個(gè)數(shù)(整體).”
試按提示解答下面問題.
(1)若代數(shù)式2x2+3y的值為-5,求代數(shù)式6x2+9y+8的值.
(2)已知A+B=3x2-5x+1,A-C=-2x+3x2-5,求當(dāng)x=2時(shí)B+C的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用整體思想解題:為了簡化問題,我們往往把一個(gè)式子看出一個(gè)數(shù)的整體,試按提示解答下面問題.
(1)已知A+B=3x2-5x+1,A-C=-2x+3x2-5,求當(dāng)x=2時(shí)B+C的值.
提示:B+C=(A+B)-(A-C)
(2)若代數(shù)式2x2+3y+7的值為8,求代數(shù)式6x2+9y+8的值.
提示:把6x2+9y+8變形為含有2x2+3y+7的形式.
(3)已知xy=2x+2y,求代數(shù)式(3x-5xy+3y)÷(-x+3xy-y)的值.
提示:把xy和x+y當(dāng)做一個(gè)整體.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

提示“用整體思想解題:為了簡化問題,我們往往把一個(gè)式子看成一個(gè)數(shù)(整體).”
試按提示解答下面問題.
(1)若代數(shù)式2x2+3y的值為-5,則代數(shù)式6x2+9 y+8=
-7
-7

(2)已知A+B=3x2-5x+1,A-C=-2x+3x2-5,當(dāng)x=2時(shí)B+C=
0
0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

用整體思想解題:為了簡化問題,我們往往把一個(gè)式子看出一個(gè)數(shù)的整體,試按提示解答下面問題.
(1)已知A+B=3x2-5x+1,A-C=-2x+3x2-5,求當(dāng)x=2時(shí)B+C的值.
提示:B+C=(A+B)-(A-C)
(2)若代數(shù)式2x2+3y+7的值為8,求代數(shù)式6x2+9y+8的值.
提示:把6x2+9y+8變形為含有2x2+3y+7的形式.
(3)已知xy=2x+2y,求代數(shù)式(3x-5xy+3y)÷(-x+3xy-y)的值.
提示:把xy和x+y當(dāng)做一個(gè)整體.

查看答案和解析>>

同步練習(xí)冊(cè)答案