【題目】(1)如圖1,已知,,可得=______;

(2)如圖2,在(1)的條件下,如果平分,=________

(3)如圖3,在(1)(2)的條件下,如果=_________;

(4)嘗試解決下面問題:如圖4,,的平分線,的度數(shù).

【答案】 60° 30° 60°

【解析】分析:(1BCD與∠ABC是兩平行直線AB、CDBC所截得到的內(nèi)錯(cuò)角,所以根據(jù)兩直線平行,內(nèi)錯(cuò)角相等即可求解

2)根據(jù)角平分線的定義求解即可;

3)根據(jù)互余的兩個(gè)角的和等于90°,計(jì)算即可

4)先根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)和角平分線的定義求出∠BCN的度數(shù),再利用互余的兩個(gè)角的和等于90°即可求出.

詳解:(1)∵AB//CD,∴∠BCD=∠B=60°.

故答案為:60°;

2)∵CM平分∠BCD,∴∠BCN=BCD=×60°=30°.

故答案為:30°;

3)∵CNCM,∴∠MCN=90°,∴∠BCN=90°-∠BCM=90°-30°=60°.故答案為:60°;

4ABCD∴∠B+∠BCE=180°.

∵∠B=40°,∴∠BCE=180°﹣B=180°﹣40°=140°.

又∵CN是∠BCE的平分線∴∠BCN=140°÷2=70°.

CNCM,∴∠BCM=90°﹣BCN=90°﹣70°=20°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明(在下面的括號(hào)內(nèi)填上相應(yīng)的結(jié)論或推理的依據(jù)):如圖,AD⊥BCD,EG⊥BCG,∠E=∠3,

求證:AD∠BAC的平分線

證明:∵AD⊥BC,EG⊥BC(已知)

∴∠4=∠5=90°( )

∴AD∥EG( )

∴∠1=∠E( ) ∠2=∠3( )

∵∠E=∠3(已知)

∴( )=( )

∴AD∠BAC的平分線(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】杭紹臺(tái)高鐵項(xiàng)目是國內(nèi)首批八個(gè)社會(huì)資本投資鐵路示范項(xiàng)目之一,也是中國首個(gè)民營控股高速鐵路項(xiàng)目.該項(xiàng)目可用批復(fù)總投資預(yù)計(jì)448.9億元,資本金占總投資的30%,其中民營聯(lián)合體占股51%,其中448.9億元用科學(xué)記數(shù)法表示為_____元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,AB=AC,D為BC邊的中點(diǎn),過點(diǎn)D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).

(1)求證:DE=DF;

(2)若∠A=,BE=5.

①求證: ②求△ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動(dòng)點(diǎn)P在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動(dòng),1次從原點(diǎn)運(yùn)動(dòng)到點(diǎn)(1,1),2次接著運(yùn)動(dòng)到點(diǎn)(2,0),3次接著運(yùn)動(dòng)到點(diǎn)(3,2),…,按這樣的運(yùn)動(dòng)規(guī)律,經(jīng)過第2 018次運(yùn)動(dòng)后,動(dòng)點(diǎn)P的坐標(biāo)是( )

A. (2018,0) B. (2018,1) C. (2018,2) D. (2017,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,一次函數(shù)y=2x+4與x軸,y軸分別相交于A,B兩點(diǎn),一次函數(shù)圖象與坐標(biāo)軸圍成的△ABO,我們稱它為此一次函數(shù)的坐標(biāo)三角形.把坐標(biāo)三角形面積分成相等的二部分的直線叫做坐標(biāo)三角形的等積線.

(1)求此一次函數(shù)的坐標(biāo)三角形周長(zhǎng)以及過點(diǎn)A的等積線的函數(shù)表達(dá)式;

(2)如圖2,我們把第一個(gè)坐標(biāo)三角形△ABO記為第一代坐標(biāo)三角形.第一代坐標(biāo)三角形的等積線BA1,AB1記為第一對(duì)等積線,它們交于點(diǎn)O1,四邊形A1OB1O1稱為第一個(gè)坐標(biāo)四邊形.求點(diǎn)O1的坐標(biāo)和坐標(biāo)四邊形A1OB1O1面積;

(3)如圖3.第一對(duì)等積線與坐標(biāo)軸構(gòu)成了第二代坐標(biāo)三角形△BA1O.△AOB1分別過點(diǎn)A,B作一條平分△BA1O,△AOB1面積的第二對(duì)等積線BA2,AB2,相交于點(diǎn)O2,如此進(jìn)行下去.…,請(qǐng)直接寫出On的坐標(biāo)和第n個(gè)坐標(biāo)四邊形面積(用n表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)B、C、D都在半徑為6的⊙O上,過點(diǎn)C作AC∥BD交OB的延長(zhǎng)線于點(diǎn)A,連接CD,已知∠CDB=∠OBD=30°.
(1)求證:AC是⊙O的切線;
(2)求弦BD的長(zhǎng);
(3)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=CB,ABC=90°,F(xiàn)為AB延長(zhǎng)線上一點(diǎn),點(diǎn)E在BC上,且AE=CF.

(1)求證:RtABERtCBF;

(2)若CAE=30°,求ACF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出定義:設(shè)一條直線與一條拋物線只有一個(gè)公共點(diǎn),且這條直線與這條拋物線的對(duì)稱軸不平行,就稱直線與拋物線相切,這條直線是拋物線的切線.有下列命題: ①直線y=0是拋物線y= x2的切線;
②直線x=﹣2與拋物線y= x2 相切于點(diǎn)(﹣2,1);
③若直線y=x+b與拋物線y= x2相切,則相切于點(diǎn)(2,1);
④若直線y=kx﹣2與拋物線y= x2相切,則實(shí)數(shù)k=
其中正確命題的是(
A.①②④
B.①③
C.②③
D.①③④

查看答案和解析>>

同步練習(xí)冊(cè)答案