(本題滿分12分)如圖,在平面直角坐標系中,直線l沿x軸翻折后,與x軸交于點A,與y軸交于點B,拋物線y軸交于點D,與直線AB交于點E、點F(點F在點E的右側).

(1)求直線AB的解析式;

(2)若線段DFx軸,求拋物線的解析式;

(3)如圖,在(2)的條件下,過FFHx軸于點G,與直線l交于點H,在拋物線上是否存在P、Q兩點(點P在點Q的上方),PQAF交于點M,與FH交于點N,使得直線PQ既平分△AFH的周長,又平分△AFH面積,如果存在,求出P、Q的坐標,若不存在,請說明理由.

 

25.解:(1)設直線AB的解析式為

     直線x軸、y軸交點分別為(-2,0),(0,

    沿x軸翻折,則直線、直線ABx軸交于同一點(-2,0)

A(-2,0).與y軸的交點(0,)與點B關于x軸對稱

B(0,

解得,

∴直線AB的解析式為 .………………………………3分

(2)拋物線的頂點為Ph,0),拋物線解析式為:

D(0,).∵DFx軸,∴點F(2h,),

又點F在直線AB上,∴

解得 ,.(舍去)

∴拋物線的解析式為.……………………7分

                                                

(3)過MMTFHT

∴Rt△MTF∽Rt△AGF

FT=3kTM=4k,FM=5k

FN-FM=16-5k

=48,

解得(舍去).

FM=6,FT,MTGN=4,TG

M,)、N(6,-4).

∴直線MN的解析式為:

聯(lián)立,求得P(1,); Q(3,0)…………………12分

解析:略

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(本題滿分12分)

如圖,直角梯形ABCD中,ABDC,,.動點M以每秒1個單位長的速度,從點A沿線段AB向點B運動;同時點P以相同的速度,從點C沿折線C-D-A向點A運動.當點M到達點B時,兩點同時停止運動.過點M作直線lAD,與線段CD的交點為E,與折線A-C-B的交點為Q.點M運動的時間為t(秒).

(1)當時,求線段的長;

(2)當0<t<2時,如果以C、P、Q為頂點的三角形為直角三角形,求t的值;

(3)當t>2時,連接PQ交線段AC于點R.請?zhí)骄?img width=28 height=43 src="http://thumb.zyjl.cn/pic1/imagenew/czsx/8/199768.png" >是否為定值,若是,試求這個定值;若不是,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(貴州銅仁卷)數(shù)學 題型:解答題

(本題滿分12分)如圖,在邊長為2的正方形ABCD中,PAB的中點,Q為邊CD上一動點,設DQt(0≤t≤2),線段PQ的垂直平分線分別交邊AD、BC于點MN,過QQEAB于點E,過MMFBC于點F
(1)當t≠1時,求證:△PEQ≌△NFM
(2)順次連接P、M、Q、N,設四邊形PMQN的面積為S,求出S與自變量t之間的函數(shù)關系式,并求S的最小值.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年上海市徐匯區(qū)中考一模數(shù)學卷 題型:解答題

(本題滿分12分)

如圖,的頂點AB在二次函數(shù)的圖像上,又點A、B[分別在軸和軸上,ABO

1.(1)求此二次函數(shù)的解析式;(4分)

2.

 

 
(2)過點交上述函數(shù)圖像于點,

在上述函數(shù)圖像上,當相似時,求點的坐標.(8分)

 

 

查看答案和解析>>

科目:初中數(shù)學 來源:2010年高級中等學校招生考試數(shù)學卷(廣東珠海) 題型:解答題

(本題滿分12分)如圖1,拋物線與x軸交于A、C兩點,與y軸交于B點,與直線交于A、D兩點。

⑴直接寫出A、C兩點坐標和直線AD的解析式;

⑵如圖2,質地均勻的正四面體骰子的各個面上依次標有數(shù)字-1、1、3、4.隨機拋擲這枚骰子兩次,把第一次著地一面的數(shù)字m記做P點的橫坐標,第二次著地一面的數(shù)字n記做P點的縱坐標.則點落在圖1中拋物線與直線圍成區(qū)域內(圖中陰影部分,含邊界)的概率是多少?

 

查看答案和解析>>

科目:初中數(shù)學 來源:2010年高級中等學校招生全國統(tǒng)一考試數(shù)學卷(廣西桂林) 題型:解答題

(本題滿分12分)

如圖,直角梯形ABCD中,ABDC,,,.動點M以每秒1個單位長的速度,從點A沿線段AB向點B運動;同時點P以相同的速度,從點C沿折線C-D-A向點A運動.當點M到達點B時,兩點同時停止運動.過點M作直線lAD,與線段CD的交點為E,與折線A-C-B的交點為Q.點M運動的時間為t(秒).

(1)當時,求線段的長;

(2)當0<t<2時,如果以C、P、Q為頂點的三角形為直角三角形,求t的值;

(3)當t>2時,連接PQ交線段AC于點R.請?zhí)骄?img src="http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/2012062023192556339203/SYS201206202322040008469979_ST.files/image007.png">是否為定值,若是,試求這個定值;若不是,請說明理由.

 

查看答案和解析>>

同步練習冊答案