【題目】甲、乙兩臺(tái)機(jī)器共加工一批零件,在加工過(guò)程中兩臺(tái)機(jī)器均改變了一次工作效率.從工作開(kāi)始到加工完這批零件兩臺(tái)機(jī)器恰好同時(shí)工作6小時(shí).甲、乙兩臺(tái)機(jī)器各自加工的零件個(gè)數(shù)y(個(gè))與加工時(shí)間x(時(shí))之間的函數(shù)圖象分別為折線OA﹣AB與折線OC﹣CD.如圖所示.

(1)甲機(jī)器改變工作效率前每小時(shí)加工零件 個(gè).

(2)求乙機(jī)器改變工作效率后y與x之間的函數(shù)關(guān)系式,并求出自變量x的取值范圍.

(3)求這批零件的總個(gè)數(shù).

(4)直接寫(xiě)出當(dāng)甲、乙兩臺(tái)機(jī)器所加工零件數(shù)相差10個(gè)時(shí),x的值為

【答案】(1)20;(2)y=10x+60(2x6);(3)260;(4)

【解析】解:(1)80÷4=20(件),

故答案為:20;

(2)圖象過(guò)C(2,80),D(5,110),

設(shè)解析式為y=kx+b(k0),

,解得:,

y=10x+60(2x6);

(3)AB過(guò)(4,80),(5,110),

設(shè)AB的解析式為y=mx+n(m0),

,解得:,

y=30x﹣40(4x6),

當(dāng)x=6時(shí),y=30×6﹣40=140,y=10×6+60=120,

這批零件的總個(gè)數(shù)是140+120=260;

(4)40x﹣10=20x,

解得:x=,

10x+60﹣10=30x﹣40,

解得:x=,

30x﹣40﹣10=10x+60,

解得:x=,

當(dāng)甲、乙兩臺(tái)機(jī)器所加工零件數(shù)相差10個(gè)時(shí),x的值為

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了打造區(qū)域中心城市,實(shí)現(xiàn)跨越式發(fā)展,我市新區(qū)建設(shè)正按投資計(jì)劃有序推進(jìn).新區(qū)建設(shè)工程部,因道路建設(shè)需要開(kāi)挖土石方,計(jì)劃每小時(shí)挖掘土石方540m3,現(xiàn)決定向某大型機(jī)械租賃公司租用甲、乙兩種型號(hào)的挖掘機(jī)來(lái)完成這項(xiàng)工作,租賃公司提供的挖掘機(jī)有關(guān)信息如表:

1)若租用甲、乙兩種型號(hào)的挖掘機(jī)共8臺(tái),恰好完成每小時(shí)的挖掘量,則甲、乙兩種型號(hào)的挖掘機(jī)各需多少臺(tái)?

2)如果每小時(shí)支付的租金不超過(guò)850元,又恰好完成每小時(shí)的挖掘量,那么共有幾種不同的租用方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面等式成立的是(

A.83.5°=83°50′

B.37°12′36″=37.48°

C.24°24′24″=24.44°

D.41.25°=41°15′

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,北部灣海面上,一艘解放軍軍艦在基地A的正東方向且距A地60海里的B處訓(xùn)練,突然接到基地命令,要該艦前往C島,接送一名病危的漁民到基地醫(yī)院救治.已知C島在A的北偏東30°方向,且在B的北偏西60°方向,軍艦從B處出發(fā),平均每小時(shí)行駛30海里,需要多少時(shí)間才能把患病漁民送到基地醫(yī)院.(精確到0.1小時(shí),1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,動(dòng)點(diǎn)P在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動(dòng),第1次從原點(diǎn)運(yùn)動(dòng)到點(diǎn)(1,1),第2次接著運(yùn)動(dòng)到點(diǎn)(2,0),第3次接著運(yùn)動(dòng)到點(diǎn)(32),,按這樣的運(yùn)動(dòng)規(guī)律,經(jīng)過(guò)第2017次運(yùn)動(dòng)后,動(dòng)點(diǎn)P的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下列各組線段為邊,不能組成三角形的是( )

A. 2cm3cm,4cm B. 1cm2cm,3cm

C. 3cm4cm,5cm D. 4cm,2cm3cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)Ax,4)與點(diǎn)B3,y)關(guān)于y軸對(duì)稱,那么x+y的值為____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形ABCD中,ABCD,ADAB,B=60°AB=10,BC=4,點(diǎn)P沿線段AB從點(diǎn)A向點(diǎn)B運(yùn)動(dòng),設(shè)AP=x

1)求AD的長(zhǎng);

2)點(diǎn)P在運(yùn)動(dòng)過(guò)程中,是否存在以A、P、D為頂點(diǎn)的三角形與以P、C、B為頂點(diǎn)的三角形相似?若存在,求出x的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),E是直線AB、CD內(nèi)部一點(diǎn),AB∥CD,連接EA、ED.

(1)探究:

①若∠A=30°,∠D=40°,則∠AED等于多少度?

②若∠A=20°,∠D=60°,則∠AED等于多少度?

③在圖(1)中∠AED、∠EAB、∠EDC有什么數(shù)量關(guān)系,并證明你的結(jié)論.

(2)拓展:如圖(2),射線FE與矩形ABCD的邊AB交于點(diǎn)E,與邊CD交于點(diǎn)F,①②③④分別是被射線FE隔開(kāi)的四個(gè)區(qū)域(不含邊界,其中③④位于直線AB的上方),P是位于以上四個(gè)區(qū)域上點(diǎn),猜想:∠PEB、∠PFC、∠EPF之間的關(guān)系.(不要求證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案