【題目】如圖,已知Rt△ABD中,∠A=90°,將斜邊BD繞點(diǎn)B順時(shí)針?lè)较蛐D(zhuǎn)至BC,使BC∥AD,過(guò)點(diǎn)C作CE⊥BD于點(diǎn)E.
(1)求證:△ABD≌△ECB;
(2)若∠ABD=30°,BE=3,求弧CD的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)
【解析】
(1)由題意得兩個(gè)三角形是直角三角形,根據(jù)旋轉(zhuǎn)的性質(zhì)得出BC=BD,由AD∥BC推出∠ADB=∠EBC,即可證明△ABD≌△ECB;
(2)由全等三角形的性質(zhì)得出AD=BE=3.根據(jù)30°角所對(duì)的直角邊等于斜邊的一半得出BD=2AD=6,根據(jù)平行線(xiàn)的性質(zhì)求出∠DBC=60°,再代入弧長(zhǎng)計(jì)算公式求解即可.
(1)證明:∵∠A=90°,CE⊥BD ∴∠A=∠BEC=90°
∵BC∥AD
∴∠ADB=∠EBC
∵旋轉(zhuǎn),
∴BD=BC’
∴ △ABD≌△ECB
(2) ∵ △ABD≌△ECB
∴AD=BE=3
∵∠A=90°,∠ABD=30°
∴BD=2AD=6
∵BC ∥ AD
∴∠A+∠ABC=180°
∴∠ABC=90, ∠DBC=60°
.
故答案為:(1)證明見(jiàn)解析;(2) .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且OA=2,OC=3.
(1)求拋物線(xiàn)的解析式;
(2)作Rt△OBC的高OD,延長(zhǎng)OD與拋物線(xiàn)在第一象限內(nèi)交于點(diǎn)E,求點(diǎn)E的坐標(biāo);
(3)①在x軸上方的拋物線(xiàn)上,是否存在一點(diǎn)P,使四邊形OBEP是平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
②在拋物線(xiàn)的對(duì)稱(chēng)軸上,是否存在上點(diǎn)Q,使得△BEQ的周長(zhǎng)最小?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(9分)某中學(xué)學(xué)生為了解該校學(xué)生喜歡球類(lèi)活動(dòng)的情況,隨機(jī)抽取了若干名學(xué)生進(jìn)行問(wèn)卷調(diào)查(要求每位學(xué)生只能填寫(xiě)一種自己喜歡的球類(lèi)),并將調(diào)查的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中提供的信息,解答下面的問(wèn)題:
(1)參加調(diào)查的學(xué)生共有 人,在扇形圖中,表示“其他球類(lèi)”的扇形的圓心角為 度;
(2)將條形圖補(bǔ)充完整;
(3)若該校有2000名學(xué)生,則估計(jì)喜歡“籃球”的學(xué)生共有 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點(diǎn)I是△ABC的內(nèi)心,∠AIC=124°,點(diǎn)E在AD的延長(zhǎng)線(xiàn)上,則∠CDE的度數(shù)為( 。
A. 56° B. 62° C. 68° D. 78°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形OABC中,OA=6,OC=4,F是AB上的一個(gè)動(dòng)點(diǎn)(F不與A,B重合),過(guò)點(diǎn)F的反比例函數(shù)的圖象與BC邊交于點(diǎn)E.
(1)當(dāng)F為AB的中點(diǎn)時(shí),求該函數(shù)的解析式;
(2)當(dāng)k為何值時(shí),△EFA的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線(xiàn)與軸交于點(diǎn),與軸交于點(diǎn),在軸上有一動(dòng)點(diǎn),過(guò)點(diǎn)作軸的垂線(xiàn)交直線(xiàn)于點(diǎn),交拋物線(xiàn)于點(diǎn).
(1)求的值;
(2)若,求的值,
(3)如圖2,在(2)的條件下,設(shè)動(dòng)點(diǎn)對(duì)應(yīng)的位置是,將線(xiàn)段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,旋轉(zhuǎn)角為,連接、,求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)教育部門(mén)為了解初中數(shù)學(xué)課堂中學(xué)生參與情況,并按“主動(dòng)質(zhì)疑、獨(dú)立思考、專(zhuān)注聽(tīng)講、講解題目”四個(gè)項(xiàng)目進(jìn)行評(píng)價(jià).檢測(cè)小組隨機(jī)抽查部分學(xué)校若干名學(xué)生,并將抽查學(xué)生的課堂參與情況繪制成如圖所示的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖(均不完整).請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問(wèn)題:
(1)本次抽查的樣本容量是 ;
(2)在扇形統(tǒng)計(jì)圖中,“主動(dòng)質(zhì)疑”對(duì)應(yīng)的圓心角為 度;
(3)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)如果該地區(qū)初中學(xué)生共有60000名,那么在課堂中能“獨(dú)立思考”的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=ax2+bx(a>0)經(jīng)過(guò)原點(diǎn)O和點(diǎn)A(2,0).
(1)寫(xiě)出拋物線(xiàn)的對(duì)稱(chēng)軸與x軸的交點(diǎn)坐標(biāo);
(2)點(diǎn)(x1,y1),(x2,y2)在拋物線(xiàn)上,若x1<x2<1,比較y1,y2的大。
(3)點(diǎn)B(﹣1,2)在該拋物線(xiàn)上,點(diǎn)C與點(diǎn)B關(guān)于拋物線(xiàn)的對(duì)稱(chēng)軸對(duì)稱(chēng),求直線(xiàn)AC的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD是正方形ABCD的對(duì)角線(xiàn),BC=2,邊BC在其所在的直線(xiàn)上平移,將通過(guò)平移得到的線(xiàn)段記為PQ,連接PA、QD,并過(guò)點(diǎn)Q作QO⊥BD,垂足為O,連接OA、OP.
(1)請(qǐng)直接寫(xiě)出線(xiàn)段BC在平移過(guò)程中,四邊形APQD是什么四邊形?
(2)請(qǐng)判斷OA、OP之間的數(shù)量關(guān)系和位置關(guān)系,并加以證明;
(3)在平移變換過(guò)程中,設(shè)y=S△OPB,BP=x(0≤x≤2),求y與x之間的函數(shù)關(guān)系式,并求出y的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com