如圖,拋物線經(jīng)過點(diǎn)P,且與拋物線相交于A,B兩點(diǎn)。
(1)求a值;
(2)設(shè)與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫出一條正確的結(jié)論,并通過計(jì)算說明;
(3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為XA,XB,若在x軸上有一動點(diǎn)Q(x,0),且XA≤x≤XB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D兩點(diǎn),試問當(dāng)x為何值時,線段CD有最大值?其最大值為多少?
解:(1)∵點(diǎn)在拋物線上,

解得:。
(2)由(1)知,,
∴拋物線,
,解得:,,
又點(diǎn)M在點(diǎn)N的左邊,
,
,解得:,,
又點(diǎn)E在點(diǎn)F的左邊,
,
,,
∴點(diǎn)M與點(diǎn)F對稱,點(diǎn)N與點(diǎn)E對稱。
(3),
∴拋物線開口向下,開口向上,
根據(jù)題意,得

,
∴當(dāng)x=0時,CD有最大值2。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,拋物線經(jīng)過點(diǎn)A(12,0)、B(-4,0)、C(0,-12).頂點(diǎn)為M,過點(diǎn)A的直線y=kx-4交y軸于點(diǎn)N.
(1)求該拋物線的函數(shù)關(guān)系式和對稱軸;
(2)試判斷△AMN的形狀,并說明理由;
(3)將AN所在的直線l向上平移.平移后的直線l與x軸和y軸分別交于點(diǎn)D、E(如圖②).當(dāng)直線l平移時(包括l與直線AN重合),在拋物線對稱軸上是否存在點(diǎn)P,使得△PDE是以DE為直角邊的等腰直角三角形?若存在,直接寫出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線經(jīng)過點(diǎn)A(-1,0),B(0,-3),C(3,0)三點(diǎn),
(1)求此拋物線的解析式;
(2)若拋物線的頂點(diǎn)為D,求sin∠ACD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•高要市二模)已知:如圖,拋物線經(jīng)過點(diǎn)O、A、B三點(diǎn),四邊形OABC是直角梯形,其中點(diǎn)A在x軸上,點(diǎn)C在y軸上,BC∥OA,A(12,0)、B(4,8).
(1)求拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)D為OA的中點(diǎn),動點(diǎn)P自A點(diǎn)出發(fā)沿A→B→C→O的路線移動,若線段PD將梯形OABC的面積分成1﹕3兩部分,求此時P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆北京廣安中學(xué)初三第一學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,拋物線經(jīng)過點(diǎn)A(1,0),與y軸交于點(diǎn)B。

(1)求拋物線的解析式;
(2)P是y軸上一點(diǎn),且△PAB是以AB為腰的等腰三角形,請直接寫出P點(diǎn)坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013學(xué)年吉林省鎮(zhèn)賚縣鎮(zhèn)賚鎮(zhèn)中學(xué)九年級下第二次綜合測試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,拋物線經(jīng)過點(diǎn)A(1,0),與軸交于點(diǎn)B.

(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)若P是坐標(biāo)軸上一點(diǎn),且三角形PAB是以AB為腰的等腰三角形,試求P點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案