精英家教網 > 初中數學 > 題目詳情

【題目】計算:cos60°﹣21+ ﹣(π﹣3)0

【答案】解:原式= +2﹣1
=1.
【解析】原式第一項利用特殊角的三角函數值計算,第二項利用負整數指數冪法則計算,第三項利用二次根式性質化簡,最后一項利用零指數冪法則計算即可得到結果.此題考查了實數的運算,熟練掌握運算法則是解本題的關鍵.
【考點精析】解答此題的關鍵在于理解零指數冪法則的相關知識,掌握零次冪和負整數指數冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數),以及對整數指數冪的運算性質的理解,了解aman=am+n(m、n是正整數);(amn=amn(m、n是正整數);(ab)n=anbn(n是正整數);am/an=am-n(a不等于0,m、n為正整數);(a/b)n=an/bn(n為正整數).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,二次函數y=(x+2)2+m的圖象與y軸交于點C,點B在拋物線上,且與點C關于拋物線的對稱軸對稱,已知一次函數y=kx+b的圖象經過該二次函數圖象上的點A(﹣1,0)及點B.

(1)求二次函數與一次函數的解析式;
(2)根據圖象,寫出滿足(x+2)2+m≥kx+b的x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:△ABC內接于⊙O,D是 上一點,OD⊥BC,垂足為H.

(1)如圖1,當圓心O在AB邊上時,求證:AC=2OH;
(2)如圖2,當圓心O在△ABC外部時,連接AD、CD,AD與BC交于點P,求證:∠ACD=∠APB;
(3)在(2)的條件下,如圖3,連接BD,E為⊙O上一點,連接DE交BC于點Q、交AB于點N,連接OE,BF為⊙O的弦,BF⊥OE于點R交DE于點G,若∠ACD﹣∠ABD=2∠BDN,AC=5 ,BN=3 ,tan∠ABC= ,求BF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD,ABBC1,CD,DA1且∠B90°.求:

(1)BAD的度數;

(2)四邊形ABCD的面積(結果保留根號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數y=kx+b(k≠0)的圖象與反比例函數y= (m≠0)的圖象交于A、B兩點,與x軸交于C點,點A的坐標為(n,6),點C的坐標為(﹣2,0),且tan∠ACO=2.

(1)求該反比例函數和一次函數的解析式;
(2)求點B的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知,射線分別和直線交于點,射線分別和直線交于點,點在射線上運動(點與三點不重合),設,,

(1)如果點兩點之間運動時,之間有何數量關系?請說明理由;

(2)如果點兩點之外運動時,之間有何數量關系?(只需寫出結論,不必說明理由)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點H,請你添加一個適當的條件:_____________,使△AEH≌△CEB

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點O,E,F分別是OA,OC的中點,連接BE,DF

(1)根據題意,補全原形;
(2)求證:BE=DF.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,甲、乙兩船從港口A同時出發(fā),甲船以30海里/時的速度向北偏東35°的方向航行乙船以40海里/時的速度向另一方向航行,2小時后,甲船到達C,乙船到達B,C,B兩島相距100海里則乙船航行的方向是南偏東多少度?

查看答案和解析>>

同步練習冊答案