如圖,在矩形ABCD中,AB=4,BC=3,將△ABC沿AC折疊,點(diǎn)B落在B′處,AB′交CD于E,P為AC上的一個動點(diǎn),PH⊥AB′于H,PG⊥CD于G,則PG+PH的值為
3
3
分析:延長GP交AB于點(diǎn)F,根據(jù)矩形的性質(zhì)就可以得出CD∥AB,可以得出PF⊥AB,由角平分線的性質(zhì)就可以得出HP=FP,EF的值就是PG+PH的值.
解答:解:延長GP交AB于點(diǎn)F.
∵四邊形ABCD是矩形,
∴AD=BC,AB=CD,AB∥CD,∠B=∠BCD=∠D=∠DAB=90°,
∴∠CGP=∠AFG.
∵PG⊥CD于G,
∴∠CGP=90°,
∴∠AFG=90°.
∴GF⊥AB,
∴∠EFB=90°,
∴∠CGP=∠EFB=∠B=90°
∴四邊形EFBC是矩形,
∴EF=BC
∵△ABC與△AB′C關(guān)于AC對稱,
∴△ABC≌△AB′C,
∴∠B′AC=∠BAC,
∵PH⊥AB′,PF⊥AB,
∴PH=PF.
∴PG+PH=PG+PF=EF.
∴BC=3,
∴EF=3,
∴PG+PH=3.
故答案為:3.
點(diǎn)評:本題考查了矩形的性質(zhì)的運(yùn)用,角平分線的性質(zhì)的運(yùn)用,軸對稱的性質(zhì)的運(yùn)用,解答時(shí)運(yùn)用軸對稱的性質(zhì)求解是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4cm,BC=8cm,點(diǎn)P從點(diǎn)A出發(fā)以1cm/s的速度向點(diǎn)B運(yùn)動,點(diǎn)Q從點(diǎn)B出發(fā)以2cm/s的速度向點(diǎn)C運(yùn)動,設(shè)經(jīng)過的時(shí)間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關(guān)系的是(  )
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,點(diǎn)O在對角線AC上,以O(shè)A的長為半徑的⊙O與AD、AC分別交于點(diǎn)E、F,且∠ACB=∠DCE精英家教網(wǎng)
(1)判斷直線CE與⊙O的位置關(guān)系,并說明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C→D路線向點(diǎn)D勻速運(yùn)動,到達(dá)點(diǎn)D后停止;點(diǎn)Q從點(diǎn)D出發(fā),沿 D→C→B→A路線向點(diǎn)A勻速運(yùn)動,到達(dá)點(diǎn)A后停止.若點(diǎn)P、Q同時(shí)出發(fā),在運(yùn)動過程中,Q點(diǎn)停留了1s,圖②是P、Q兩點(diǎn)在折線AB-BC-CD上相距的路程S(cm)與時(shí)間t(s)之間的函數(shù)關(guān)系圖象.
(1)請解釋圖中點(diǎn)H的實(shí)際意義?
(2)求P、Q兩點(diǎn)的運(yùn)動速度;
(3)將圖②補(bǔ)充完整;
(4)當(dāng)時(shí)間t為何值時(shí),△PCQ為等腰三角形?請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,對角線AC,BD相交于點(diǎn)O,∠AOB=60°,AB=6,則AD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動點(diǎn)(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點(diǎn)F,設(shè)CE=x,BF=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)x為何值時(shí),y的值最大,最大值是多少?
(3)若設(shè)線段AB的長為m,上述其它條件不變,m為何值時(shí),函數(shù)y的最大值等于3?

查看答案和解析>>

同步練習(xí)冊答案