【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1,以邊AC上一點(diǎn)O為圓心,OA為半徑的⊙O經(jīng)過(guò)點(diǎn)B.
(1)求⊙O的半徑;
(2)點(diǎn)P為中點(diǎn),作PQ⊥AC,垂足為Q,求OQ的長(zhǎng);
(3)在(2)的條件下,連接PC,求tan∠PCA的值.
【答案】(1)⊙O的半徑為;(2);(3).
【解析】
(1)若連接OB,則△BCO是一個(gè)含30°角的直角三角形,△AOB是底角為30°的等腰三角形,可得∠OBC=30°,再根據(jù)特殊角的三角函數(shù)值求得OB;
(2) 連接OP,設(shè)AB與QP交于點(diǎn)M,根據(jù)題中條件證得∠QPO=∠A=30°,再根據(jù)特殊角的三角函數(shù)值求得OQ;
(3)可在Rt△PCQ中解決,分別計(jì)算出兩條直角邊,即可求出tan∠PCA的值.
(1)連接OB,如圖
∵OA=OB,
∴∠ABO=∠A=30°,
∵∠ACB=90°,∠A=30°,
∴∠ABC=60°,
∴∠OBC=30°,
在Rt△OBC中,,
即,
解得,
即⊙O的半徑為;
(2)連接OP,設(shè)AB與QP交于點(diǎn)M,
∵點(diǎn)P為的中點(diǎn),
∴OP⊥AB,
∴∠QPO+∠PMB=90°,
∵PQ⊥AC,
∴∠A+∠AMQ=90°,
又∵∠AMQ=∠PMB,
∴∠QPO=∠A=30°,
在Rt△OPQ中,,
即,
∴
(3)在Rt△OBC中,
∵,∠OBC=30°,∠ACB=90°
∴,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AB=8,AC與BD交于點(diǎn)O,N是AO的中點(diǎn),點(diǎn)M在BC邊上,且BM=6. P為對(duì)角線BD上一點(diǎn),則PM—PN的最大值為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知菱形,,,E為中點(diǎn),P為對(duì)角線上一點(diǎn),則的最小值等于( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),菱形ABCD的頂點(diǎn)B在x軸的正半軸上,點(diǎn)A坐標(biāo)為(-4,0),點(diǎn)D的坐標(biāo)為(-1,4),反比例函數(shù)的圖象恰好經(jīng)過(guò)點(diǎn)C,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是王阿姨晚飯后步行的路程s(單位:m)與時(shí)間t(單位:min)的函數(shù)圖象,其中曲線段AB是以B為頂點(diǎn)的拋物線一部分.下列說(shuō)法不正確的是( )
A.25min~50min,王阿姨步行的路程為800m
B.線段CD的函數(shù)解析式為
C.5min~20min,王阿姨步行速度由慢到快
D.曲線段AB的函數(shù)解析式為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論:①ac>0;②a﹣b+c<0;③當(dāng)x<0時(shí),y<0;④方程ax2+bx+c=0(a≠0)有兩個(gè)大于﹣1的實(shí)數(shù)根.其中正確的結(jié)論有( 。
A. ①③ B. ②③ C. ①④ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】要在一塊長(zhǎng)52m,寬48m的矩形綠地上,修建同樣寬的兩條互相垂直的甬路.下面分別是小亮和小穎的設(shè)計(jì)方案.
(1)求小亮設(shè)計(jì)方案中甬路的寬度x;
(2)求小穎設(shè)計(jì)方案中四塊綠地的總面積(友情提示:小穎設(shè)計(jì)方案中的與小亮設(shè)計(jì)方案中的取值相同)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校調(diào)查了若干名家長(zhǎng)對(duì)“初中生帶手機(jī)上學(xué)”現(xiàn)象的看法,統(tǒng)計(jì)整理并制作了如下的條形與扇形統(tǒng)計(jì)圖,根據(jù)圖中提供的信息,完成以下問(wèn)題:
(1)本次共調(diào)查了 名家長(zhǎng),扇形統(tǒng)計(jì)圖中“很贊同”所對(duì)應(yīng)的圓心角度數(shù)是 度,并補(bǔ)全條形統(tǒng)計(jì)圖.
(2)該校共有3600名家長(zhǎng),通過(guò)計(jì)算估計(jì)其中“不贊同”的家長(zhǎng)有多少名?
(3)從“不贊同”的五位家長(zhǎng)中(兩女三男),隨機(jī)選取兩位家長(zhǎng)對(duì)全校家長(zhǎng)進(jìn)行“學(xué)生使用手機(jī)危害性”的專題講座,請(qǐng)用樹狀圖或列表法求出選中“1男1女”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)和的圖象相交于點(diǎn),反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn).
(1)求反比例函數(shù)的表達(dá)式;
(2)設(shè)一次函數(shù) 的圖象與反比例函數(shù) 的圖象的另一個(gè)交點(diǎn)為,連接,求的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com