【題目】如圖,在ABCD中,∠ABD的平分線BE交AD于點(diǎn)E,∠CDB的平分線DF交BC于點(diǎn)F,連接BD.
(1)求證:△ABE≌△CDF;
(2)若AB=DB,求證:四邊形DFBE是矩形.
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.
【解析】
試題分析:(1)根據(jù)平行四邊形性質(zhì)得出AB=CD,∠A=∠C.求出∠ABD=∠CDB.推出∠ABE=∠CDF,根據(jù)ASA推出全等即可;
(2)根據(jù)全等得出AE=CF,根據(jù)平行四邊形性質(zhì)得出AD∥BC,AD=BC,推出DE∥BF,DE=BF,得出四邊形DFBE是平行四邊形,根據(jù)等腰三角形性質(zhì)得出∠DEB=90°,根據(jù)矩形的判定推出即可.
試題解析:(1)在□ABCD中,AB=CD,∠A=∠C.∵AB∥CD,∴∠ABD=∠CDB.
∵BE平分∠ABD,DF平分∠CDB,∴∠ABE=∠ABD,∠CDF=∠CDB,∴∠ABE=∠CDF.
∵在△ABE和△CDF中,∵∠A=∠C,AB=DC,∠ABE=∠CDF,∴△ABE≌△CDF(ASA).
(2)∵△ABE≌△CDF,∴AE=CF,∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,∴DE∥BF,DE=BF,∴四邊形DFBE是平行四邊形,∵AB=DB,BE平分∠ABD,∴BE⊥AD,即∠DEB=90°,∴平行四邊形DFBE是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道:“兩邊及其中一邊的對(duì)角分別相等的兩個(gè)三角形不一定全等”.但是,小亮發(fā)現(xiàn):當(dāng)這兩個(gè)三角形都是銳角三角形時(shí),它們會(huì)全等,除小亮的發(fā)現(xiàn)之外,當(dāng)這兩個(gè)三角形都是 時(shí),它們也會(huì)全等;當(dāng)這兩個(gè)三角形其中一個(gè)三角形是銳角三角形,另一個(gè)是 時(shí),它們一定不全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算中,正確的是( )
A.2a2+3a2=5a4
B.(a﹣b)2=a2﹣b2
C.(a3)3=a6
D.(﹣2a2)3=﹣8a6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列條件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B= ∠C中,能確定△ABC是直角三角形的條件有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,E,F(xiàn)分別是OA,OC的中點(diǎn),連接BE,DF
(1)根據(jù)題意,補(bǔ)全原形;
(2)求證:BE=DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】鄰補(bǔ)角是( )
A. 和為180°的兩個(gè)角
B. 有公共頂點(diǎn)且有一條公共邊,另一邊互為反向延長(zhǎng)線的兩個(gè)角
C. 有一條公共邊且相等的兩個(gè)角
D. 有公共頂點(diǎn)且互補(bǔ)的兩個(gè)角
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線y=x﹣1的圖象經(jīng)過(guò)第( )象限.
A. 一、二、三 B. 一、二、四 C. 二、三、四 D. 一、三、四
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若x>y,則下列式子中錯(cuò)誤的是( )
A.x+ >y+
B.x﹣3>y﹣3
C. >
D.﹣3x>﹣3y
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com