【題目】已知:如圖,拋物線y=x2﹣2x﹣3與x軸交于A、B兩點,與y軸交于點C,該拋物線的頂點為M.
(1)求點A、B、C的坐標.
(2)求直線BM的函數(shù)解析式.
(3)試說明:∠CBM+∠CMB=90°.
(4)在拋物線上是否存在點P,使直線CP把△BCM分成面積相等的兩部分?若存在,請求出點P的坐標;若不存在,請說明理由.
【答案】(1)點A(﹣1,0),點B(3,0),點C坐標為(0,﹣3);(2)y=2x﹣6;(3)證明見解析;(4)點P坐標為(,﹣).
【解析】
(1)根據(jù)題意可以直接可求點A、B、C的坐標;
(2)用待定系數(shù)法可求解析式;
(3)根據(jù)兩點距離公式可求BM,BC,CM的長度,根據(jù)勾股定理的逆定理可得∠BCM=90°,即可證:∠CBM+∠CMB=90°;
(4)根據(jù)題意可求線段BM中點坐標,即可求直線CP解析式,且點P在拋物線上,可列方程,即可求點P坐標.
(1)∵拋物線y=x2﹣2x﹣3與x軸交于A、B兩點,∴0=x2﹣2x﹣3,∴x1=3,x2=﹣1,∴點A(﹣1,0),點B(3,0).
∵拋物線y=x2﹣2x﹣3與y軸交于點C,∴當x=0時,y=﹣3,∴點C坐標為(0,﹣3);
(2)∵拋物線y=x2﹣2x﹣3=(x﹣1)2﹣4,∴點M(1,﹣4).
設直線BM的解析式:y=kx+b過點B(3,0),M(1,﹣4),∴
解得:k=2,b=﹣6.
∴直線BM的解析式:y=2x﹣6.
(3)∵點M(1,﹣4),點B(3,0),點C(0,﹣3),∴BC==3
BM==2
CM==
∵BC2+CM2=20,BM2=20,∴BC2+CM2=BM2,∴∠BCM=90°,∴∠CBM+∠CMB=90°.
(4)如圖:設直線CP與BM的交點為F.
∵直線CP把△BCM分成面積相等的兩部分,∴S△CMF=S△BCF.
∵△CMF和△BCF是等高的兩個三角形,∴FM=BF,即點F是BM的中點.
∵點B(3,0),點M(1,﹣4),∴點F坐標為(2,﹣2).
設直線CP的解析式為y=mx+n,∴
解得:m=,n=﹣3
∴直線CP解析式y=x﹣3.
∵點P是直線CP與拋物線y=x2﹣2x﹣3的交點,∴x﹣3=x2﹣2x﹣3
解得:x1=0(不合題意舍去),x2=.
當x=時,y=﹣2×=﹣,∴點P坐標為(,﹣).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,線段AB 是⊙O的直徑,弦CD⊥AB于點H,點M是弧CBD 上任意一點,AH=2,CH=4.
(1)求⊙O 的半徑r 的長度;
(2)求sin∠CMD;
(3)直線BM交直線CD于點E,直線MH交⊙O 于點 N,連接BN交CE于點 F,求HEHF的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c的頂點坐標為(2,9),與y軸交于點A(0,5),與x軸交于點E、B.
(1)求二次函數(shù)y=ax2+bx+c的表達式;
(2)過點A作AC平行于x軸,交拋物線于點C,點P為拋物線上的一點(點P在AC上方),作PD平行于y軸交AB于點D,問當點P在何位置時,四邊形APCD的面積最大?并求出最大面積;
(3)若點M在拋物線上,點N在其對稱軸上,使得以A、E、N、M為頂點的四邊形是平行四邊形,且AE為其一邊,求點M、N的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=5cm,BC=13cm,點D在線段AC上,且CD=7cm,動點P從距B點15cm的E點出發(fā),以每秒2cm的速度沿射線EA的方向運動,時間為t秒.
(1)求AD的長.
(2)用含有t的代數(shù)式表示AP的長.
(3)在運動過程中,是否存在某個時刻,使△ABC與△ADP全等?若存在,請求出t值;若不存在,請說明理由.
(4)直接寫出t=______秒時,△PBC為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某藥廠銷售部門根據(jù)市場調(diào)研結(jié)果,對該廠生產(chǎn)的一種新型原料藥未來兩年的銷售進行預測,井建立如下模型:設第t個月該原料藥的月銷售量為P(單位:噸),P與t之間存在如圖所示的函數(shù)關(guān)系,其圖象是函數(shù)P=(0<t≤8)的圖象與線段AB的組合;設第t個月銷售該原料藥每噸的毛利潤為Q(單位:萬元),Q與t之間滿足如下關(guān)系:Q=
(1)當8<t≤24時,求P關(guān)于t的函數(shù)解析式;
(2)設第t個月銷售該原料藥的月毛利潤為w(單位:萬元)
①求w關(guān)于t的函數(shù)解析式;
②該藥廠銷售部門分析認為,336≤w≤513是最有利于該原料藥可持續(xù)生產(chǎn)和銷售的月毛利潤范圍,求此范圍所對應的月銷售量P的最小值和最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是邊長為8等邊三角形,如圖所示,現(xiàn)有兩點M、N分別從點A、點B同時出發(fā),沿三角形的邊運動,已知點M的速度為每秒1個單位長度,點N的運度為每秒2個單位長度,當點M第一次到達B點時,M、N同時停止運動.
(1)點M、N運動幾秒后,可得到等邊三角形?
(2)點M、N運動幾秒后,M、N兩點重合?
(3)當點M、N在BC邊上運動時,能否得到以MN為底邊的等腰?如存在,請求出此時M、N運動的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC中,a、b、c分別是∠A、∠B、∠C的對邊,下列條件不能判斷△ABC是直角三角形的是( )
A.∠A﹣∠B=∠C
B.∠A:∠B:∠C=3:4:5
C.(b+c)(b﹣c)=a2
D.a(chǎn)=7,b=24,c=25
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),……,按這樣的運動規(guī)律,經(jīng)過第2011次運動后,動點P的坐標是( )
A.(2011,0)B.(2011,1)C.(2011,2)D.(2010,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P為平行四邊形ABCD邊AD上一點,E、F分別是PB、PC(靠近點P)的三等分點,△PEF、△PDC、△PAB的面積分別為、、,若AD=2,AB=,∠A=60°,則的值為( )
A. B. C. D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com