25、如圖1,已知:△ABC中,AB=AC,∠BAC=90°,AE是過A的一條直線,且B、C在AE的兩側(cè),BD⊥AE于D,CE⊥AE于E.
(1)△ABD與△CAE全等嗎?BD與AE、AD與CE相等嗎?為什么?
(2)BD、DE、CE之間有什么樣的等量關(guān)系(寫出關(guān)系式即可)
(3)若直線AE繞A點旋轉(zhuǎn),如圖2,其它條件不變,那么BD與DE、CE的關(guān)系如何?說明理由.
分析:(1)利用AAS判定△ABD≌△CAE,根據(jù)全等三角形的對應(yīng)邊相等可以求得BD=AE,AC=CE;
(2)因為BD=AE,AD=CE,AE=AD+DE=CE+DE所以BD=DE+CE;
(3)因為BD=AE,AD=CE,DE=AE+AD=BD+CE,所以BD=DE-CE.
解答:(1)解:BD=AE,AD=CE.
理由:∵BD⊥AE于D,CE⊥AE于E,∠BAC=90°,
∴∠BDA=∠AEC=90°,∠DBA+∠BAD=90°,∠BAD+∠EAC=90°,
∴∠DBA=∠EAC,
∵AB=AC,
∴△ABD≌△CAE(AAS)
∴BD=AE,AD=CE;

(2)解:BD=DE+CE.
理由:∵BD=AE,AD=CE
∴AE=AD+DE=CE+DE
∴BD=DE+CE;

(3)解:BD=DE-CE.
證明:同(1)可證明△ABD≌△CAE(AAS)
∴BD=AE,AD=CE
∵DE=AE+AD=BD+CE
∴BD=DE-CE.
點評:本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖1,已知線段AB和直線m,點A在直線m上,以AB為一邊畫等腰△ABC,且使點C在直線m上,這樣的等腰三角形最多有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•翔安區(qū)模擬)(1)如圖1,已知線段AB,請用直尺和圓規(guī)作出線段AB的垂直平分線(不寫畫法,保留作圖痕跡);
(2)計算:(-1)0+2sin60°+
16
-|1-
3
|
;
(3)如圖2,已知AB∥CD,直線MN交AB于M,交CD于N,ME平分∠AMN,NF平分∠DNM,求證:EM∥FN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•梅州)如圖1,已知線段AB的長為2a,點P是AB上的動點(P不與A,B重合),分別以AP、PB為邊向線段AB的同一側(cè)作正△APC和正△PBD.
(1)當△APC與△PBD的面積之和取最小值時,AP=
a
a
;(直接寫結(jié)果)
(2)連接AD、BC,相交于點Q,設(shè)∠AQC=α,那么α的大小是否會隨點P的移動面變化?請說明理由;
(3)如圖2,若點P固定,將△PBD繞點P按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角小于180°),此時α的大小是否發(fā)生變化?(只需直接寫出你的猜想,不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知線段AB=8,點C是AB上的一動點(不包括A、B),在AB同側(cè)作兩個等邊三角形ACD和BCE,連DE,點P、F分別是DE和BE的中點,連接AF,分別交DC、CE于G、H.
(1)寫出圖中所有的相似三角形(除等邊三角形ACD和BCE外);
(2)當點C在AB中點時,如圖2,求CP的長及AG:GH:HF;
(3)點M、N是線段AB上兩點,且AM=BN=2,當點C從點M向點N運動時,求點P所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖1,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,試猜想線段CE與DE的大小與位置關(guān)系,并證明你的結(jié)論.
(2)如圖2,等腰Rt△ABC中,∠ACB=90°.直線DE經(jīng)過△ABC內(nèi)部,AD⊥DE于點D,BE⊥DE于點E,試猜想線段AD、BE、DE之間滿足什么關(guān)系?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案